Approximation of continuous space systems and associated metrics and logics

Josée Desharnais

Laval University Québec, Canada

MLQA 2011

Mostly joint work with Vincent Danos, Vineet Gupta, Radha Jagadeesan, Prakash Panangaden.

Desharnais, Laval University Approximation, metrics and logics

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

• below \mathcal{S} , or simulated by \mathcal{S} (may do less)

- as a sequence, w.r.t. some distance $d(\mathcal{S}_i,\mathcal{S})
 ightarrow 0$
- in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If S is finite, we can recover S itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

below S, or simulated by S (may do less)
converge to S
•

e.g. $(a \not h)$ could be approximated by

- as a sequence, w.r.t. some distance $d(\mathcal{S}_i,\mathcal{S})
 ightarrow 0$
- in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

- - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \rightarrow 0$
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

- below S, or simulated by S (may do less)
- converge to Se.g. a to could be approximated by a = aa = a to a = aa = a to a = aa = a
 - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \to 0$
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If ${\mathcal S}$ is finite, we can recover ${\mathcal S}$ itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

- below S, or simulated by S (may do less)
- converge to Se.g. a to could be approximated by a = aa = a to a = aa = a to a = aa = a
 - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \to 0$
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If ${\mathcal S}$ is finite, we can recover ${\mathcal S}$ itself?

• (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

- below S, or simulated by S (may do less)
- - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \to 0$
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

- below S, or simulated by S (may do less)
- - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \to 0$
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of S?

A (countable?) family of finite-state systems that satisfy...

- below S, or simulated by S (may do less)
- - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \to 0$
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- If ${\mathcal S}$ is finite, we can recover ${\mathcal S}$ itself?
- (freeness to guide approximation w.r.t. some constraints.)

Outline

- Definitions: LMPs, a simple logic, bisimulation
 - Model: LMPs
 - Logic
- 2 Approximation depth n and precision ϵ
- 3 Approximations through properties
 - Tentative definition through quotient
 - Definition
 - Results
- Approximations through averaging
- Overview of metrics and other approximations
 - Metrics
 - ϵ -bisimulation metric
 - Approximation of probabilistic hybrid systems
 - Conclusion

Model Logic

Labelled Markov processes

 $(S, i, \Sigma, \{P_a\}_{a \in \mathcal{A}})$ S can be continuous

 $P_a(s, X)$:

: probability that the process in state *s* jumps to a state in *X*, with action *a*.

 $P_a(\cdot, X) : S \to [0;1]$ is measurable $P_a(s, \cdot) : \Sigma \to [0;1]$ is a measure Time is discrete Model Logic

Labelled Markov processes

 $(S, i, \Sigma, \{P_a\}_{a \in \mathcal{A}})$ S can be continuous

 $P_a(s, X)$: probability that the process in state s jumps to a state in X, with action a.

 $P_a(\,\cdot\,,X):S\to[0;1]$ is measurable $P_a(s,\,\cdot\,):\Sigma\to[0;1]$ is a measure Time is discrete

$\boldsymbol{\mathsf{U}}$ is the uniform distribution

$$\mathcal{L}_{\vee} := \top \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \langle a \rangle_{\geq q} \phi. \qquad q \in \mathbb{Q} \cap [0; 1]$$

 $\begin{array}{l} s_i \text{ is simulated by } t_i \\ s_1 \text{ satisfies the formula } \langle a \rangle_{\geq 1/2} \langle b \rangle_{\geq 1} \top \\ t_1 \models \langle a \rangle_{\geq 1/3} \langle b \rangle_{\geq 1} \langle a \rangle_{\geq 1}^n \top \end{array}$

Bismulation is two-way simulation. Hence, sim and bisim characterized by $\mathcal{L}_{ee}.$

 s_i is simulated by t_i

 s_1 satisfies the formula $\langle a \rangle_{\geq 1/2} \langle b \rangle_{\geq 1} \top t_1 \models \langle a \rangle_{\geq 1/3} \langle b \rangle_{\geq 1} \langle a \rangle_{\geq 1}^n \top$

Bismulation is two-way simulation. Hence, sim and bisim characterized by $\mathcal{L}_{ee}.$

 $\begin{array}{l} s_i \text{ is } \textit{simulated by } t_i \\ s_1 \text{ satisfies the formula } \langle a \rangle_{\geq 1/2} \langle b \rangle_{\geq 1} \top \\ t_1 \models \langle a \rangle_{\geq 1/3} \langle b \rangle_{\geq 1} \langle a \rangle_{\geq 1}^n \top \end{array}$

Bismulation is two-way simulation. Hence, sim and bisim characterized by $\mathcal{L}_{ee}.$

 $\begin{array}{l} s_i \text{ is } \textit{simulated by } t_i \\ s_1 \text{ satisfies the formula } \langle a \rangle_{\geq 1/2} \langle b \rangle_{\geq 1} \top \\ t_1 \models \langle a \rangle_{\geq 1/3} \langle b \rangle_{\geq 1} \langle a \rangle_{\geq 1}^n \top \end{array}$

Bismulation is two-way simulation. Hence, sim and bisim characterized by $\mathcal{L}_{ee}.$

 $\begin{array}{l} s_1 \text{ satisfies the formula } \langle a \rangle_{\geq 1/2} \langle b \rangle_{\geq 1} \top \\ t_1 \models \langle a \rangle_{\geq 1/3} \langle b \rangle_{\geq 1} \langle a \rangle_{\geq 1}^n \top \end{array}$

Bismulation is two-way simulation. Hence, sim and bisim characterized by \mathcal{L}_{\vee} .

Defs $S(n, \epsilon)$ InfQuotient Averaging Misc Model Logic Bisimulation minimisation

States in (1; 2] are all bisimilar, similarly for (2; 3].

Defs $S(n, \epsilon)$ InfQuotient Averaging Misc Model Logic Bisimulation minimisation

States in (1; 2] are all bisimilar, similarly for (2; 3].

Defs $S(n, \epsilon)$ InfQuotient Averaging Misc Model Logic Example, minimized

States in (1; 2] are all bisimilar, similarly for (2; 3].

Outline

- Definitions: LMPs, a simple logic, bisimulation
 Model: LMPs
 - Logic

2 Approximation depth n and precision ϵ

Approximations through properties

- Tentative definition through quotient
- Definition
- Results
- 4 Approximations through averaging
- 5 Overview of metrics and other approximations
 - Metrics
 - ε-bisimulation metric
 - Approximation of probabilistic hybrid systems
 - Conclusion

Approximants $\mathcal{S}(n,\epsilon)$ are defined according to depth n and precision ϵ .

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_a(\,\cdot\,,C_{l-1})$

Transitions are

• between states of the same level $P_a^{app}(X_l, C_l) := \inf_{x \in C_l} P_a(x, C_l)$

• to previous level: remaining probability

Approximants $S(n, \epsilon)$ are defined according to depth n and precision ϵ .

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_a(\,\cdot\,,C_{l-1})$

Transitions are

• between states of the same level $P_a^{app}(X_l, C_l) := \inf_{x \in C_l} P_a(x, C_l)$

• to previous level: remaining probability

Approximants $\mathcal{S}(n,\epsilon)$ are defined according to depth n and precision ϵ .

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_a(\cdot, C_{l-1})$

Transitions are

• between states of the same level $P_a^{app}(X_l, C_l) := \inf_{x \in C_l} P_a(x, C_l)$

• to previous level: remaining probability

Approximants $\mathcal{S}(n,\epsilon)$ are defined according to depth n and precision ϵ .

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_a(\cdot, C_{l-1})$

Transitions are

between states of the same level P^{app}_a(X_l, C_l) := inf_{x∈Cl} P_a(x, C_l)
to previous level: remaining probability

Approximants $\mathcal{S}(n,\epsilon)$ are defined according to depth n and precision ϵ .

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_a(\cdot, C_{l-1})$

Transitions are

- between states of the same level $P_a^{app}(X_l, C_l) := \inf_{x \in C_l} P_a(x, C_l)$
- to previous level: remaining probability

$\mathcal{S}(n,\epsilon)$ of depth *n*, precision ϵ [DGJP00] [DD03]

Approximants $S(n, \epsilon)$ are defined according to depth n and precision ϵ .

Example: part of S(2, 1/2). At level 1, split *S* w.r.t. $P_a(\cdot, S)$ & $P_b(\cdot, S)$ values in $\{0\}, (0; \frac{1}{2}], (\frac{1}{2}; 1]$ At level 2, split *S* w.r.t. $\{0, \frac{1}{6}, \frac{2}{6}, \ldots\}$

States in [0;1] have probability 3/4 of jumping to S. Let us focus on state $(\frac{1}{3}; \frac{2}{3})$.

$\mathcal{S}(n,\epsilon)$ of depth *n*, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n,\epsilon)$ are defined according to depth n and precision ϵ . Example: part of $\mathcal{S}(2, 1/2)$. At level 1, split S w.r.t. $P_a(\cdot, S) \& P_b(\cdot, S)$ values in $\{0\}, (0; \frac{1}{2}], (\frac{1}{2}; 1]$ At level 2, split S w.r.t. $\{0, \frac{1}{6}, \frac{2}{6}, \ldots\}$ $\overset{a,b[\inf=0]}{\Longrightarrow} S \overset{a,b[\inf=0]}{\smile}$ depth 0 $a\left[\frac{3}{4}\right]$ inf=0 $(2;3] \xrightarrow{b} \bullet$ $(\frac{1}{12}) \xrightarrow{a[\frac{1}{12}]} (\frac{1}{3};\frac{2}{3}) \xrightarrow{(\frac{2}{3};1]} (1;2] \xrightarrow{(2;3]}$ [0; 2]depth 1 $(0; \frac{1}{3}]$ $\{0\}$ a States in [0; 1] have probability 3/4 of jumping to S. Let us focus on state $(\frac{1}{3}; \frac{2}{3})$.

 $\mathcal{S}(n,\epsilon)$ of depth *n*, precision ϵ [DGJP00] [DD03]

State $(\frac{1}{3}; \frac{2}{3})$ has probability 3/4 to [0; 2]. It has 7/12 probability to states of the same level that refine [0; 2]. The remaining probability 2/12 is sent to level 1.

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...

- \checkmark below \mathcal{S} , or simulated by \mathcal{S} (may do less)
- \checkmark converge to ${\mathcal S}$
 - \checkmark as a sequence, w.r.t. some distance $d(S_i, S) \rightarrow 0$
 - ✓ in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- \checkmark If S is finite, it is its own approximant (for some ϵ and n)
- freeness to guide approximation w.r.t. some constraints.

 $\mathcal{S}(n,\epsilon)$ of depth n, precision ϵ

An approximation algorithm for labelled Markov processes: towards realistic approximation Bouchard-Cote, Ferns, Panangaden, Precup, QEST '05.

Outline

- Definitions: LMPs, a simple logic, bisimulation
 - Model: LMPs
 - Logic
 - Approximation depth n and precision ϵ

3 Approximations through properties

- Tentative definition through quotient
- Definition
- Results
- 4 Approximations through averaging
- Overview of metrics and other approximations
 - Metrics
 - ε-bisimulation metric
 - Approximation of probabilistic hybrid systems
 - Conclusion

Approximate through properties

Last scheme aggregates states that satisfy the same properties from some set.

For $\epsilon = 1/2$ and n = 2, the formulas are

•
$$\langle a_0 \rangle_{>q_0} \top$$
 for $a_0 \in \mathcal{A}, q_0 \in \{\frac{1}{2}, 1\}$ (depth 1)

•
$$\langle a_0 \rangle_{\geq q_0} (\wedge_i \langle a_i \rangle_{\geq q_i} \top)$$
 for $a_i \in \mathcal{A}, q_i \in \{\frac{1}{6}, \frac{2}{6}, \dots, 1\}$ (depth 2)

The second scheme aims at doing the same but for any set of formulas

Quotient? Def Results

Approximate through properties

Last scheme aggregates states that satisfy the same properties from some set.

For $\epsilon = 1/2$ and n = 2, the formulas are

•
$$\langle a_0 \rangle_{>q_0} \top$$
 for $a_0 \in \mathcal{A}, q_0 \in \{\frac{1}{2}, 1\}$ (depth 1)

•
$$\langle a_0 \rangle_{>q_0} (\wedge_i \langle a_i \rangle_{>q_i} \top)$$
 for $a_i \in \mathcal{A}, q_i \in \{\frac{1}{6}, \frac{2}{6}, \dots, 1\}$ (depth 2)

The second scheme aims at doing the same but for any set of formulas

Quotient? Def Results

Approximate through properties

Quotient the state space w.r.t. a chosen set ${\mathcal F}$ of properties from some logic,

Example

And transitions? Can we take infima?

Approximate through properties

Quotient the state space w.r.t. a chosen set ${\mathcal F}$ of properties from some logic,

Example

Let $\mathcal{F} = \{ \langle a \rangle_q \top, \langle b \rangle_q \top \mid q \in \{\frac{1}{2}\} \}.$

$$P_a^{app}(C,D) = \inf_{x \in C} P_a(x,D)$$

Approximate through properties

Quotient the state space w.r.t. a chosen set ${\mathcal F}$ of properties from some logic,

Approximate through properties

Quotient the state space w.r.t. a chosen set ${\mathcal F}$ of properties from some logic,

It works!

Defs $\mathcal{S}(n,\epsilon)$ InfQuotient Averaging Misc

Quotient? Def Results

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties, $P_a^{app}(C,D) = \inf_{x \in C} P_a(x,D)$

Example

Let $\mathcal{F} = \{ \langle a \rangle_q \top, \langle b \rangle_q \top \mid q \in Q \cap [0;1] \}.$

Defs $S(n, \epsilon)$ InfQuotient Averaging Misc

Quotient? Def Results

Approximate through properties

Quotient the state space w.r.t. a chosen set ${\cal F}$ of properties, $P^{app}_a(C,D)=\inf_{x\in C}P_a(x,D)$

Example

Let $\mathcal{F} = \{ \langle a \rangle_q \top, \langle b \rangle_q \top \mid q \in Q \cap [0;1] \}.$

Both dotted transitions have value 0, but $\inf_{u \in [s]} P_a(u, \cup [s_1, \bullet]) = 1$.

 $\longrightarrow P_a$ is not a measure

 \implies the quotient is not an LMP.

Defs $S(n, \epsilon)$ InfQuotient Averaging Misc

Quotient? Def Results

Approximate through properties

Quotient the state space w.r.t. a chosen set ${\cal F}$ of properties, $P^{app}_a(C,D)=\inf_{x\in C}P_a(x,D)$

Example

Let $\mathcal{F} = \{ \langle a \rangle_q \top, \langle b \rangle_q \top \mid q \in Q \cap [0;1] \}.$

Both dotted transitions have value 0, but $\inf_{u \in [s]} P_a(u, \cup [s_1, \bullet]) = 1$.

 $\longrightarrow P_a$ is not a measure

 \implies the quotient is not an LMP.

Defs $\mathcal{S}(n,\epsilon)$ InfQuotient Averaging Misc

Quotient? Def Results

Approximate through properties

Solution: generalise LMPs

Definition

- A pre-LMP is a LMP where $P_a(s, -)$ satisfies
 - $\bullet \ \forall A,B \in \Sigma \ {\rm disjoint}$

 $P_a(s, A \cup B) \geq P_a(s, A) + P_a(s, B)$

• \forall decreasing $A_n \in \Sigma : f(\cap A_n) = \inf_n P_a(s, A_n).$

Theorem

If R is an equivalence relation with measurable equivalence classes, the inf-quotient w.r.t R is a pre-LMP

Defs $\mathcal{S}(n,\epsilon)$ InfQuotient Averaging Misc

Quotient? Def Results

Approximate through properties

Solution: generalise LMPs

Definition

A pre-LMP is a LMP where $P_a(s, -)$ satisfies

• $\forall A, B \in \Sigma$ disjoint

 $P_a(s, A \cup B) \geq P_a(s, A) + P_a(s, B)$

• \forall decreasing $A_n \in \Sigma : f(\cap A_n) = \inf_n P_a(s, A_n).$

Theorem

If R is an equivalence relation with measurable equivalence classes, the inf-quotient w.r.t R is a pre-LMP

Approximate through properties

Theorem

Let $\mathcal{F} \subseteq \mathcal{L}^*$, $s \in S$. Then the quotient is a pre-LMP and

 $s \approx_{\mathcal{F}} [s]_{\mathcal{F}}$

i.e.: the inf-quotient defines an $\approx_{\mathcal{F}}$ -approximant

This is the best approximant below S. If \mathcal{F} is finite, we get a finite approximant. if S is finite, we get itself as an approximant when \mathcal{F} is rich enough.

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...

- \checkmark below S, or simulated by S (may do less)
- \checkmark converge to ${\mathcal S}$
 - \checkmark as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \rightarrow 0$
 - ✓ in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- $\checkmark\,$ If ${\mathcal S}$ is finite, it is its own approximant
- ✓ freeness to guide approximation w.r.t. some constraints.

Pre-LMPs have nice other properties (Concur 09)

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...

- \checkmark below S, or simulated by S (may do less)
- \checkmark converge to ${\mathcal S}$
 - \checkmark as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \rightarrow 0$
 - ✓ in properties: set of properties satisfied by S_i increases to set of properties satisfied by S
- $\checkmark\,$ If ${\mathcal S}$ is finite, it is its own approximant
- ✓ freeness to guide approximation w.r.t. some constraints.

Pre-LMPs have nice other properties (Concur 09)

Outline

- Definitions: LMPs, a simple logic, bisimulation
 Model: LMPs
 - Logic
- 2 Approximation depth n and precision ϵ
- 3 Approximations through properties
 - Tentative definition through quotient
 - Definition
 - Results
- Approximations through averaging
- Overview of metrics and other approximations
 - Metrics
 - ϵ -bisimulation metric
 - Approximation of probabilistic hybrid systems
 - Conclusion

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

Maybe averaging could help us stay in the world of LMPs

Let us look back at our example.

s has probability 1 to $[s_1]$ but t has probability 0.

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

Maybe averaging could help us stay in the world of LMPs

Let us look back at our example.

s has probability 1 to $[s_1]$ but t has probability 0.

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

We rely on some probability distribution on the state space. Here we chose uniform: we treated s and t equally.

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

We rely on some probability distribution on the state space. Here we chose uniform: we treated s and t equally.

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

In general, for (S, Σ, p) a probability space, we define probabilities as

 $P_a^{app}([s]_{\mathcal{F}}, C) := \mathbb{E}_p(P_a(\cdot, C) | \sigma(\mathcal{F}))(s),$

where \mathbb{E}_p is the conditional expectation (unique under condition) and $\sigma(\mathcal{F})$ is the σ -algebra generated by measurable sets of formulas $[\![\phi]\!]$

This is defined in full generality in

Approximating Markov Processes by Averaging, Chaput, Danos, Panangaden, Plotkin, ICALP '09

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

In general, for (S,Σ,p) a probability space, we define probabilities as

 $P_a^{app}([s]_{\mathcal{F}}, C) := \mathbb{E}_p(\underline{P_a}(\cdot, C) | \sigma(\mathcal{F}))(s),$

where \mathbb{E}_p is the conditional expectation (unique under condition) and $\sigma(\mathcal{F})$ is the σ -algebra generated by measurable sets of formulas $[\![\phi]\!]$

This is defined in full generality in

Approximating Markov Processes by Averaging, Chaput, Danos, Panangaden, Plotkin, ICALP '09.

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...

• below S, or simulated by S (may do less)

 \checkmark converge to ${\mathcal S}$

- \checkmark as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \rightarrow 0$
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S. We have s ≈_F [s]_F
- \checkmark If S is finite, it is its own approximant (if \mathcal{F} is rich enough)
- ✓ freeness to guide approximation w.r.t. some constraints.

Outline

- Definitions: LMPs, a simple logic, bisimulation
 - Model: LMPs
 - Logic
- 2 Approximation depth n and precision ϵ
- 3 Approximations through properties
 - Tentative definition through quotient
 - Definition
 - Results
- 4 Approximations through averaging

5 Overview of metrics and other approximations

- Metrics
- ε-bisimulation metric
- Approximation of probabilistic hybrid systems
- Conclusion

Metrics e-bisimulation metric Hybrid Conclusion

Metric defined as real valued logic

Definition

 $\forall c \in (0,1],$ a family \mathcal{F}^c of functional expressions generated by

$$f := 1 \mid 1 - f \mid \langle a \rangle f \mid \min(f_1, f_2) \mid f \diamond q \mid \quad q \in \mathbb{Q}$$

With the following semantics $f: \mathcal{S} \longrightarrow [0, 1]$

$$\begin{array}{lll} \langle a \rangle \, f(s) & := & c \int_{S} f(t) P_{a}(s, dt), \\ f \circ q(s) & := & \max(f(s) - q, 0), \end{array}$$

Definition

$$d^{c}(s,t) := \sup_{f \in \mathcal{F}^{c}} |f(s) - f(t)|$$

Desharnais, Laval University Approximation, metrics and logics

Papers on metric defined as real valued logic

- Metrics for labelled Markov processes, Desharnais, Gupta, Jagadeesan, Panangaden CONCUR '99 (and TCS 2004).
- The metric analogue of weak bisimulation for probabilistic processes, same authors, LICS '02.
- Approximating a behavioural pseudometric without discount, van Breugel, Sharma, Worrell FSTTCS '07.
- tutorial by Franck van Breugel at Bertinoro 2010 (available online).
- Game Relations and Metrics,

de Alfaro, Majumdar, Raman, Stoelinga, LICS '07.

• Algorithms for game metrics,

Chatterjee, de Alfaro, Majumdar, Raman, FSTTCS '08.

Papers on metric defined as real valued logic

- Metrics for labelled Markov processes, Desharnais, Gupta, Jagadeesan, Panangaden CONCUR '99 (and TCS 2004).
- The metric analogue of weak bisimulation for probabilistic processes, same authors, LICS '02.
- Approximating a behavioural pseudometric without discount, van Breugel, Sharma, Worrell FSTTCS '07.
- tutorial by Franck van Breugel at Bertinoro 2010 (available online).
- Game Relations and Metrics, de Alfaro, Majumdar, Raman, Stoelinga, LICS '07.
- Algorithms for game metrics,

Chatterjee, de Alfaro, Majumdar, Raman, FSTTCS '08.

ϵ -simulation and ϵ -bisimulation

Definition

A relation $\mathcal{R} \subseteq S \times S$ is an ϵ -simulation if whenever $s\mathcal{R}t$, then $\forall a$, if $s \xrightarrow{a} \mu$, then $\exists t \xrightarrow{a} \nu$ such that for all $X \subseteq S$

$$\mu(X) \le \nu(\mathcal{R}(X)) + \epsilon.$$

s is ϵ -simulated by t, written $s \prec_{\epsilon} t$, if $s\mathcal{R}t$ for some such \mathcal{R} . If \mathcal{R} is symmetric, it is an ϵ -bisimulation.

$$s \xrightarrow[a,1-\epsilon]{a,1-\epsilon} t \overset{b}{\bigcirc} b,1-\epsilon \qquad s_1 \xrightarrow[a,1]{a,1} t_1 \overset{b}{\bigcirc} b,1$$

Then $s \prec_0 s_1$, $s_1 \not\prec_0 s$. and $s \not\sim_0 s_1$.

ϵ -simulation and ϵ -bisimulation

Definition

A relation $\mathcal{R} \subseteq S \times S$ is an ϵ -simulation if whenever $s\mathcal{R}t$, then $\forall a$, if $s \xrightarrow{a} \mu$, then $\exists t \xrightarrow{a} \nu$ such that for all $X \subseteq S$

$$\mu(X) \le \nu(\mathcal{R}(X)) + \epsilon.$$

s is ϵ -simulated by t, written $s \prec_{\epsilon} t$, if $s\mathcal{R}t$ for some such \mathcal{R} . If \mathcal{R} is symmetric, it is an ϵ -bisimulation.

$$s \xrightarrow[a,1-\epsilon]{} t \stackrel{\frown}{\longrightarrow} b, 1-\epsilon \qquad s_1 \xrightarrow[a,1]{} t_1 \stackrel{\frown}{\longrightarrow} b, 1$$

Then $s \prec_0 s_1$, $s_1 \not\prec_0 s$. and $s \not\sim_0 s_1$.

But
$$s \prec_{\epsilon} s_1$$
, $s_1 \prec_{\epsilon} s$. and $s \sim_{\epsilon} s_1$

The ϵ -semantics of logic \mathcal{L} .

Syntax:

 $\begin{array}{lll} \mathcal{L} & : & \theta ::= \top \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \langle a \rangle_{\delta} \, \theta, \text{ with } \delta \in [0;1] \\ \mathcal{L}_{\neg} & : & \theta ::= \mathcal{L} \mid \neg \theta. \end{array}$

Semantics: let $\epsilon \in [-1; 1]$

$$\begin{split} s &\models_{\epsilon} \theta_{1} \wedge \theta_{2} & \text{iff } s \models_{\epsilon} \theta_{1} \text{ and } s \models_{\epsilon} \theta_{2}. \text{ (similarly for } \vee \text{).} \\ s &\models_{\epsilon} \neg \theta & \text{iff } s \not\models_{-\epsilon} \theta. \\ s &\models_{\epsilon} \langle a \rangle_{\delta} \theta & \text{iff } \exists s \xrightarrow{a} \mu, \ \mu(\llbracket \theta \rrbracket_{\epsilon}) \geq \delta - \epsilon \\ \llbracket \theta \rrbracket_{\epsilon} = \{s \models_{\epsilon} \theta\}. \end{split}$$

- If $\epsilon \ge 0$ and $\phi \in \mathcal{L}$ then $\llbracket \phi \rrbracket_{-\epsilon} \subseteq \llbracket \phi \rrbracket \subseteq \llbracket \phi \rrbracket_{\epsilon}$.
- More generally, if $\epsilon_1 \geq \epsilon_2$ then $\llbracket \phi \rrbracket_{\epsilon_1} \subseteq \llbracket \phi \rrbracket_{\epsilon_2}$.

The ϵ -semantics of logic \mathcal{L} .

Syntax:

 $\begin{array}{lll} \mathcal{L} & : & \theta ::= \top \mid \theta_1 \wedge \theta_2 \mid \theta_1 \vee \theta_2 \mid \langle a \rangle_{\delta} \, \theta, \text{ with } \delta \in [0;1] \\ \mathcal{L}_{\neg} & : & \theta ::= \mathcal{L} \mid \neg \theta. \end{array}$

Semantics: let $\epsilon \in [-1; 1]$

$$\begin{split} s &\models_{\epsilon} \theta_{1} \wedge \theta_{2} & \text{iff } s \models_{\epsilon} \theta_{1} \text{ and } s \models_{\epsilon} \theta_{2}. \text{ (similarly for } \vee \text{).} \\ s &\models_{\epsilon} \neg \theta & \text{iff } s \not\models_{-\epsilon} \theta. \\ s &\models_{\epsilon} \langle a \rangle_{\delta} \theta & \text{iff } \exists s \xrightarrow{a} \mu, \ \mu(\llbracket \theta \rrbracket_{\epsilon}) \geq \delta - \epsilon \\ \llbracket \theta \rrbracket_{\epsilon} = \{s \models_{\epsilon} \theta\}. \end{split}$$

- If $\epsilon \ge 0$ and $\phi \in \mathcal{L}$ then $\llbracket \phi \rrbracket_{-\epsilon} \subseteq \llbracket \phi \rrbracket \subseteq \llbracket \phi \rrbracket_{\epsilon}$.
- More generally, if $\epsilon_1 \geq \epsilon_2$ then $\llbracket \phi \rrbracket_{\epsilon_1} \subseteq \llbracket \phi \rrbracket_{\epsilon_2}$.

Logical characterisations for fully probabilistic.

Definition (Logical simulation and bisimulation)

•
$$s \prec_{\epsilon}^{\mathcal{L}} t$$
 if for all $\theta \in \mathcal{L}$ we have $s \models \theta \Rightarrow t \models_{\epsilon} \theta$.

•
$$s \sim_{\epsilon}^{\mathcal{L}_{\neg}} t$$
 if for all $\theta \in \mathcal{L}_{\neg}$ we have $s \models \theta \Rightarrow t \models_{\epsilon} \theta$ (and reciprocally).

Theorem

For fully probabilistic PAs

•
$$s \prec_{\epsilon} t \text{ iff } s \prec_{\epsilon}^{\mathcal{L}} t.$$

•
$$s \sim_{\epsilon} t$$
 iff $s \sim_{\epsilon}^{\mathcal{L}_{\neg}} t$.

• In general $s \prec_{\epsilon} t$ and $t \prec_{\epsilon} s$ does not imply $s \sim_{\epsilon} t$.

Logical characterisations for fully probabilistic.

Definition (Logical simulation and bisimulation)

•
$$s \prec_{\epsilon}^{\mathcal{L}} t$$
 if for all $\theta \in \mathcal{L}$ we have $s \models \theta \Rightarrow t \models_{\epsilon} \theta$.

•
$$s \sim_{\epsilon}^{\mathcal{L}_{\neg}} t$$
 if for all $\theta \in \mathcal{L}_{\neg}$ we have $s \models \theta \Rightarrow t \models_{\epsilon} \theta$ (and reciprocally).

Theorem

For fully probabilistic PAs

•
$$s \prec_{\epsilon} t$$
 iff $s \prec_{\epsilon}^{\mathcal{L}} t$.

•
$$s \sim_{\epsilon} t$$
 iff $s \sim_{\epsilon}^{\mathcal{L}_{\neg}} t$.

• In general $s \prec_{\epsilon} t$ and $t \prec_{\epsilon} s$ does not imply $s \sim_{\epsilon} t$.

Different metrics

 Approximate analysis of probabilistic processes: logic, simulation and games
 Desharnais, Laviolette, Tracol, Qest 08. Very good complexity

Very different from others as probabilities are not multiplied through traces.

- Distances for Weighted Transition Systems: Games and Properties Fahrenberg, Thrane, Larsen QAPL '11.
- Testing Probabilistic Equivalence Through Reinforcement Learning Desharnais, Laviolette, Zhioua, FSTTCS '06.
 Very fast!!! and does not need the model

Approximation of probabilistic hybrid systems

- Analysis of Non-Linear Probabilistic Hybrid Systems, Desharnais, Assouramou, QAPL '11.
 - $\bullet\ clock\ translation \longrightarrow bisimilar\ timed\ automaton$
 - linear phase-portrait approximation \longrightarrow simulating rectangular HA

• Safety Verification for Probabilistic Hybrid Systems Zhang, She, Ratschan, Hermanns, Hahn, CAV '10.

Define a finite approximant or *abstraction* by quotienting, that over-approximate the original system.

Defs $\mathcal{S}(n,\epsilon)$ InfQuotient Averaging Misc

Metrics *e*-bisimulation metric Hybrid Conclusion

Approximation of probabilistic hybrid systems [DA11]

A linear phase approx for some thermostat

on

Desharnais, Laval University

Approximation, metrics and logics

all

Desirable properties of approximants? – The end

A countable family of finite-state systems that satisfy...

- below S, or simulated by S (may do less) all but one, the averaging scheme
- \bullet converge to ${\mathcal S}$
 - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \to 0$ all
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S all
- If ${\mathcal S}$ is finite, it is its own approximant
- freeness to guide approximation w.r.t. some constraints all but one, $\mathcal{S}(n,\epsilon)$

Hybrid approximations are not constructed systematically but still satisfy some of these properties.

all

Desirable properties of approximants? – The end

A countable family of finite-state systems that satisfy...

- below S, or simulated by S (may do less) all but one, the averaging scheme
- \bullet converge to ${\mathcal S}$
 - as a sequence, w.r.t. some distance $d(\mathcal{S}_i, \mathcal{S}) \to 0$ all
 - in properties: set of properties satisfied by S_i increases to set of properties satisfied by S all
- If ${\mathcal S}$ is finite, it is its own approximant
- freeness to guide approximation w.r.t. some constraints all but one, $\mathcal{S}(n,\epsilon)$

Hybrid approximations are not constructed systematically but still satisfy some of these properties.