Approximation of continuous space systems and associated metrics and logics

Josée Desharnais
Laval University
Québec, Canada

MLQA 2011

Mostly joint work with
Vincent Danos, Vineet Gupta, Radha Jagadeesan, Prakash Panangaden.

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Hence, we do not want to split the state space randomly.

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
e.g. \int^{\bullet} could be approximated by

- as a sequence, w.r.t. some distance $d\left(S_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Hence, we do not want to split the state space randomly.

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
e.g. $a \not$ could be approximated by

- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, we can recover S itself?
- (freeness to guide approximation w.r.t. some constraints.)

Hence, we do not want to split the state space randomly.

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
e.g. $a \upharpoonleft$ could be approximated by

- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
e.g. $a \nrightarrow$ could be approximated by

- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
e.g. ${ }_{a}$ • could be approximated by

- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Hence, we do not want to split the state space randomly.

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
e.g. ${ }_{a}$ • could be approximated by

- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Hence, we do not want to split the state space randomly.

Desirable properties of approximants of \mathcal{S} ?

A (countable?) family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
- converge to \mathcal{S}
e.g. $a \upharpoonleft$ could be approximated by

- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, we can recover \mathcal{S} itself?
- (freeness to guide approximation w.r.t. some constraints.)

Hence, we do not want to split the state space randomly.

Outline

(1) Definitions: LMPs, a simple logic, bisimulation

- Model: LMPs
- Logic
(2) Approximation depth n and precision ϵ
(3) Approximations through properties
- Tentative definition through quotient
- Definition
- Results

4 Approximations through averaging
(5) Overview of metrics and other approximations

- Metrics
- ϵ-bisimulation metric
- Approximation of probabilistic hybrid systems
- Conclusion

Labelled Markov processes

$\left(S, i, \Sigma,\left\{P_{a}\right\}_{a \in \mathcal{A}}\right)$
S can be continuous

$$
P_{a}(s, S) \leq 1
$$

$P_{a}(s, X)$: probability that the process in state s jumps to a state in X, with action a.
$P_{a}(\cdot, X): S \rightarrow[0 ; 1]$ is measurable
$P_{a}(s, \cdot): \Sigma \rightarrow[0 ; 1]$ is a measure
Time is discrete

Labelled Markov processes

$\left(S, i, \Sigma,\left\{P_{a}\right\}_{a \in \mathcal{A}}\right)$
S can be continuous

$P_{a}(s, X)$: probability that the process in state s jumps to a state in X, with action a.
$P_{a}(\cdot, X): S \rightarrow[0 ; 1]$ is measurable
$P_{a}(s, \cdot): \Sigma \rightarrow[0 ; 1]$ is a measure
Time is discrete

Example

\mathbf{U} is the uniform distribution

For $x \in[0 ; 1), P_{a}(x,(2 ; 2+y])=\frac{x y}{4}$
Time is discrete but state space is continuous $\{\bullet\} \cup[0 ; 3]$.

Notions of simulation, bisimulation on LMPs and a logic.

$$
\mathcal{L}_{\vee}:=\top\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2} \mid\langle a\rangle_{\geq q} \phi . \quad q \in \mathbb{Q} \cap[0 ; 1]
$$

Examples:

s_{i} is simulated by t_{i}
s_{1} satisfies the formula $\langle a\rangle \geq 1 / 2\langle b\rangle \geq 1 T$ $t_{1}=\langle a\rangle$

Bismulation is two-way simulation.
Hence, sim and bisim characterized by \mathcal{L}_{V}.

Notions of simulation, bisimulation on LMPs and a logic.

$$
\mathcal{L}_{\vee}:=\top\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2} \mid\langle a\rangle_{\geq q} \phi . \quad q \in \mathbb{Q} \cap[0 ; 1]
$$

Examples:

s_{i} is simulated by t_{i}
s_{1} satisfies the formula $\langle a\rangle$
$t_{1}=\langle a\rangle \geq 1 / 3\langle b\rangle \geq 1\langle a\rangle_{\geq 1}^{n}$
Bismulation is two-way simulation.
Hence, sim and bisim characterized by \mathcal{L}_{V}.

Notions of simulation, bisimulation on LMPs and a logic.

$$
\mathcal{L}_{\vee}:=\top\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2} \mid\langle a\rangle_{\geq q} \phi . \quad q \in \mathbb{Q} \cap[0 ; 1]
$$

Examples:

s_{i} is simulated by t_{i}
s_{1} satisfies the formula $\langle a\rangle \geq 1 / 2\langle b\rangle \geq 1 \top$

Bismulation is two-way simulation.
Hence, sim and bisim characterized by \mathcal{L}_{V}.

Notions of simulation, bisimulation on LMPs and a logic.

$$
\mathcal{L}_{\vee}:=\top\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2} \mid\langle a\rangle_{\geq q} \phi . \quad q \in \mathbb{Q} \cap[0 ; 1]
$$

Examples:

s_{i} is simulated by t_{i}
s_{1} satisfies the formula $\langle a\rangle \geq 1 / 2\langle b\rangle \geq 1 \top$
$\left.t_{1} \models\langle a\rangle \geq 1 / 3\langle b\rangle_{\geq 1}\langle a\rangle\right\rangle_{\geq 1}^{n} \top$
Bismulation is two-way simulation.
Hence, sim and bisim characterized by \mathcal{L}_{V}.

Notions of simulation, bisimulation on LMPs and a logic.

$$
\mathcal{L}_{\vee}:=\top\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2} \mid\langle a\rangle_{\geq q} \phi . \quad q \in \mathbb{Q} \cap[0 ; 1]
$$

Examples:

s_{i} is simulated by t_{i}
s_{1} satisfies the formula $\langle a\rangle \geq 1 / 2\langle b\rangle \geq 1 \top$
$\left.t_{1} \models\langle a\rangle \geq 1 / 3\langle b\rangle \geq 1\langle a\rangle\right\rangle_{\geq 1}^{n} \top$
Bismulation is two-way simulation.
Hence, sim and bisim characterized by \mathcal{L}_{\vee}.

Bisimulation minimisation

States in (1;2] are all bisimilar, similarly for $(2 ; 3]$.

For $x \in[0 ; 1), P_{a}(x,(1 ; 2])=\frac{1}{4}$, and $P_{a}(x,(2 ; 3])=\frac{x}{4}$

Bisimulation minimisation

States in $(1 ; 2]$ are all bisimilar, similarly for $(2 ; 3]$.

For $x \in[0 ; 1), P_{a}(x,(1 ; 2])=\frac{1}{4}$, and $P_{a}(x,(2 ; 3])=\frac{x}{4}$.

Example, minimized

States in (1;2] are all bisimilar, similarly for $(2 ; 3]$.

For $x \in[0 ; 1), P_{a}(x,(1 ; 2])=\frac{1}{4}$, and $P_{a}(x,(2 ; 3])=\frac{x}{4}$.
State space is still continuous.

Outline

(1) Definitions: LMPs, a simple logic, bisimulation

- Model: LMPs
- Logic
(2) Approximation depth n and precision ϵ
(3) Approximations through properties
- Tentative definition through quotient
- Definition
- Results

4 Approximations through averaging
5. Overview of metrics and other approximations

- Metrics
- ϵ-bisimulation metric
- Approximation of probabilistic hybrid systems
- Conclusion

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n, \epsilon)$ are defined according to depth n and precision ϵ.

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_{a}($

Transitions are

- between states of the same level $P_{a}^{a p p}\left(X_{l}, G_{l}\right):=\inf _{x \in C_{l}} P_{a}\left(x, C_{l}\right)$
- to previous level: remaining probability

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n, \epsilon)$ are defined according to depth n and precision ϵ.

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_{a}($

Transitions are

- between states of the same level $P_{a}^{a p p}\left(X_{l}, C_{l}\right):=\inf _{x \in C_{l}} P_{a}\left(x, C_{l}\right)$
- to previous level: remaining probability

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n, \epsilon)$ are defined according to depth n and precision ϵ.

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_{a}\left(\cdot, C_{l-1}\right)$

Transitions are

- between states of the same level $P_{a}^{a p p}\left(X_{l}, C_{l}\right):=\inf _{x \in C_{l}} P_{a}\left(x, C_{l}\right)$
- to previous level: remaining probability

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n, \epsilon)$ are defined according to depth n and precision ϵ.

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_{a}\left(\cdot, C_{l-1}\right)$

Transitions are

- between states of the same level $P_{a}^{a p p}\left(X_{l}, C_{l}\right):=\inf _{x \in C_{l}} P_{a}\left(x, C_{l}\right)$
- to previous level: remaining probability

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n, \epsilon)$ are defined according to depth n and precision ϵ.

State space is constructed by level,

Each level is a partition of the state space w.r.t. precision ϵ

Partition obtained from probabilities to previous level $P_{a}\left(\cdot, C_{l-1}\right)$

Transitions are

- between states of the same level $P_{a}^{a p p}\left(X_{l}, C_{l}\right):=\inf _{x \in C_{l}} P_{a}\left(x, C_{l}\right)$
- to previous level: remaining probability

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n, \epsilon)$ are defined according to depth n and precision ϵ.
Example: part of $\mathcal{S}(2,1 / 2)$.
At level 1 , split S w.r.t. $P_{a}(\cdot, S) \& P_{b}(\cdot, S)$ values in $\{0\},\left(0 ; \frac{1}{2}\right],\left(\frac{1}{2} ; 1\right]$
At level 2, split S w.r.t. $\left\{0, \frac{1}{6}, \frac{2}{6}, \ldots\right\}$

$$
\begin{array}{ll}
a\left[\inf _{x \in[0 ; 2]} P_{a}(x, S)-0=\frac{3}{4}\right] \\
\text { inf=0 } \longrightarrow_{[0 ; 2]}^{a, b[\mathrm{inf}=0]} & \text { depth } 0 \\
(2 ; 3] \longrightarrow \bullet & \text { depth } 1
\end{array}
$$

States in $[0 ; 1]$ have probability $3 / 4$ of jumping to S.

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Approximants $\mathcal{S}(n, \epsilon)$ are defined according to depth n and precision ϵ.
Example: part of $\mathcal{S}(2,1 / 2)$.
At level 1 , split S w.r.t. $P_{a}(\cdot, S) \& P_{b}(\cdot, S)$ values in $\{0\},\left(0 ; \frac{1}{2}\right],\left(\frac{1}{2} ; 1\right]$
At level 2 , split S w.r.t. $\left\{0, \frac{1}{6}, \frac{2}{6}, \ldots\right\}$

States in $[0 ; 1]$ have probability $3 / 4$ of jumping to S.
Let us focus on state ($\frac{1}{3} ; \frac{2}{3}$).

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ [DGJP00] [DD03]

Example: part of $\mathcal{S}(2,1 / 2)$.

State $\left(\frac{1}{3} ; \frac{2}{3}\right)$ has probâbility $3 / 4$ to $[0 ; 2]$. It has $7 / 12$ probability to states of the same level that refine $[0 ; 2]$. The remaining probability $2 / 12$ is sent to level 1 .

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...
\checkmark below \mathcal{S}, or simulated by \mathcal{S} (may do less)
converge to \mathcal{S}
\checkmark as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
\checkmark in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
\checkmark If \mathcal{S} is finite, it is its own approximant (for some ϵ and n)

- freeness to guide approximation w.r.t. some constraints.

$\mathcal{S}(n, \epsilon)$ of depth n, precision ϵ

An approximation algorithm for labelled Markov processes: towards realistic approximation
Bouchard-Cote, Ferns, Panangaden, Precup, QEST '05.

Outline

(1) Definitions: LMPs, a simple logic, bisimulation

- Model: LMPs
- Logic
(2) Approximation depth n and precision ϵ
(3) Approximations through properties
- Tentative definition through quotient
- Definition
- Results

4. Approximations through averaging
(5) Overview of metrics and other approximations

- Metrics
- ϵ-bisimulation metric
- Approximation of probabilistic hybrid systems
- Conclusion

Approximate through properties

Last scheme aggregates states that satisfy the same properties from some set.
For $\epsilon=1 / 2$ and $n=2$, the formulas are

- $\left\langle a_{0}\right\rangle_{>q_{0}} T \quad$ for $a_{0} \in \mathcal{A}, q_{0} \in\left\{\frac{1}{2}, 1\right\}$
(depth 1)
- $\left\langle a_{0}\right\rangle_{>q_{0}}\left(\wedge_{i}\left\langle a_{i}\right\rangle_{>q_{i}} \top\right)$ for $a_{i} \in \mathcal{A}, q_{i} \in\left\{\frac{1}{6}, \frac{2}{6}, \ldots, 1\right\}$
(depth 2)

The second scheme aims at doing the same but for any set of formulas

Approximate through properties

Last scheme aggregates states that satisfy the same properties from some set.
For $\epsilon=1 / 2$ and $n=2$, the formulas are

- $\left\langle a_{0}\right\rangle_{>q_{0}} T \quad$ for $a_{0} \in \mathcal{A}, q_{0} \in\left\{\frac{1}{2}, 1\right\}$
(depth 1)
- $\left\langle a_{0}\right\rangle_{>q_{0}}\left(\wedge_{i}\left\langle a_{i}\right\rangle_{>q_{i}} \top\right)$ for $a_{i} \in \mathcal{A}, q_{i} \in\left\{\frac{1}{6}, \frac{2}{6}, \ldots, 1\right\}$
(depth 2)

The second scheme aims at doing the same but for any set of formulas

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties from some logic,

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \left\lvert\, q \in\left\{\frac{1}{2}\right\}\right.\right\}$.

And transitions? Can we take infima?

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties from some logic,

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \left\lvert\, q \in\left\{\frac{1}{2}\right\}\right.\right\}$.

$P_{a}^{a p p}(C, D)=\inf _{x \in C} P_{a}(x, D)$

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties from some logic,

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \left\lvert\, q \in\left\{\frac{1}{2}\right\}\right.\right\}$.

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties from some logic,

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \left\lvert\, q \in\left\{\frac{1}{2}\right\}\right.\right\}$.

It works!

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties, $P_{a}^{a p p}(C, D)=\inf _{x \in C} P_{a}(x, D)$

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \mid q \in Q \cap[0 ; 1]\right\}$.

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties, $P_{a}^{a p p}(C, D)=\inf _{x \in C} P_{a}(x, D)$

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \mid q \in Q \cap[0 ; 1]\right\}$.

Both dotted transitions have value 0 , but $\inf _{u \in[s]} P_{a}\left(u, \cup\left[s_{1}, \bullet\right]\right)=1$.
P_{a} is not a measure
\Longrightarrow the quotient is not an LMP.

Approximate through properties

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties, $P_{a}^{a p p}(C, D)=\inf _{x \in C} P_{a}(x, D)$

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \mid q \in Q \cap[0 ; 1]\right\}$.

Both dotted transitions have value 0 , but $\inf _{u \in[s]} P_{a}\left(u, \cup\left[s_{1}, \bullet\right]\right)=1$.
$\longrightarrow P_{a}$ is not a measure
\Longrightarrow the quotient is not an LMP.

Approximate through properties

Solution: generalise LMPs

Definition

A pre-LMP is a LMP where $P_{a}(s,-)$ satisfies

- $\forall A, B \in \Sigma$ disjoint

$$
P_{a}(s, A \cup B) \geq P_{a}(s, A)+P_{a}(s, B)
$$

- \forall decreasing $A_{n} \in \Sigma: f\left(\cap A_{n}\right)=\inf _{n} P_{a}\left(s, A_{n}\right)$.

Theorem

If R is an equivalence relation with measurable equivalence classes, the inf-quotient w.r.t R is a pre-LMP

Approximate through properties

Solution: generalise LMPs

Definition

A pre-LMP is a LMP where $P_{a}(s,-)$ satisfies

- $\forall A, B \in \Sigma$ disjoint

$$
P_{a}(s, A \cup B) \geq P_{a}(s, A)+P_{a}(s, B)
$$

- \forall decreasing $A_{n} \in \Sigma: f\left(\cap A_{n}\right)=\inf _{n} P_{a}\left(s, A_{n}\right)$.

Theorem

If R is an equivalence relation with measurable equivalence classes, the inf-quotient w.r.t R is a pre-LMP

Approximate through properties

Theorem

Let $\mathcal{F} \subseteq \mathcal{L}^{*}, s \in S$. Then the quotient is a pre-LMP and

$$
s \approx_{\mathcal{F}}[s]_{\mathcal{F}}
$$

i.e.: the inf-quotient defines an $\approx_{\mathcal{F}}$-approximant

This is the best approximant below \mathcal{S}.
If \mathcal{F} is finite, we get a finite approximant.
if \mathcal{S} is finite, we get itself as an approximant when \mathcal{F} is rich enough.

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...
\checkmark below \mathcal{S}, or simulated by \mathcal{S} (may do less)
\checkmark converge to \mathcal{S}
\checkmark as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
\checkmark in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
\checkmark If \mathcal{S} is finite, it is its own approximant
freeness to guide approximation w.r.t. some constraints.

Pre-LMPs have nice other properties (Concur 09)

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...
\checkmark below \mathcal{S}, or simulated by \mathcal{S} (may do less)
\checkmark converge to \mathcal{S}
\checkmark as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
\checkmark in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
\checkmark If \mathcal{S} is finite, it is its own approximant
freeness to guide approximation w.r.t. some constraints.

Pre-LMPs have nice other properties (Concur 09)

Outline

(1) Definitions: LMPs, a simple logic, bisimulation

- Model: LMPs
- Logic

2) Approximation depth n and precision ϵ
(3) Approximations through properties

- Tentative definition through quotient
- Definition
- Results

4 Approximations through averaging
(5) Overview of metrics and other approximations

- Metrics
- ϵ-bisimulation metric
- Approximation of probabilistic hybrid systems
- Conclusion

Approximations through averaging

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

Maybe averaging could help us stay in the world of LMPs

Let us look back at our example.

Example

s has probability 1 to $\left[s_{1}\right]$ but t has probability 0 .

Approximations through averaging

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties
Maybe averaging could help us stay in the world of LMPs

Let us look back at our example.

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \mid q \in Q \cap[0 ; 1]\right\}$.

s has probability 1 to $\left[s_{1}\right]$ but t has probability 0 .

Approximations through averaging

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \mid q \in Q \cap[0 ; 1]\right\}$.

We rely on some probability distribution on the state space. Here we chose uniform: we treated s and t equally.

Approximations through averaging

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

Example

Let $\mathcal{F}=\left\{\langle a\rangle_{q} \top,\langle b\rangle_{q} \top \mid q \in Q \cap[0 ; 1]\right\}$.

We rely on some probability distribution on the state space. Here we chose uniform: we treated s and t equally.

Approximations through averaging

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

In general, for (S, Σ, p) a probability space, we define probabilities as

$$
P_{a}^{a p p}\left([s]_{\mathcal{F}}, C\right):=\mathbb{E}_{p}\left(P_{a}(\cdot, C) \mid \sigma(\mathcal{F})\right)(s),
$$

where \mathbb{E}_{p} is the conditional expectation (unique under condition) and $\sigma(\mathcal{F})$ is the σ-algebra generated by measurable sets of formulas $\llbracket \phi \rrbracket$

This is defined in full generality in
Approximating Markov Processes by Averaging,
Chaput, Danos, Panangaden, Plotkin, ICALP '09

Approximations through averaging

Quotient the state space w.r.t. a chosen set \mathcal{F} of properties

In general, for (S, Σ, p) a probability space, we define probabilities as

$$
P_{a}^{a p p}\left([s]_{\mathcal{F}}, C\right):=\mathbb{E}_{p}\left(P_{a}(\cdot, C) \mid \sigma(\mathcal{F})\right)(s),
$$

where \mathbb{E}_{p} is the conditional expectation (unique under condition)
and $\sigma(\mathcal{F})$ is the σ-algebra generated by measurable sets of formulas $\llbracket \phi \rrbracket$

This is defined in full generality in
Approximating Markov Processes by Averaging,
Chaput, Danos, Panangaden, Plotkin, ICALP '09.

Desirable properties of approximants?

A countable family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less)
\checkmark converge to \mathcal{S}
\checkmark as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0$
- in properties: set of properties satisfied by \mathcal{S}_{i} inereases to set of properties satisfied by \mathcal{S}. We have $s \approx_{\mathcal{F}}[s]_{\mathcal{F}}$
\checkmark If \mathcal{S} is finite, it is its own approximant (if \mathcal{F} is rich enough)
\checkmark freeness to guide approximation w.r.t. some constraints.

Outline

(1) Definitions: LMPs, a simple logic, bisimulation

- Model: LMPs
- Logic
(2) Approximation depth n and precision ϵ
(3) Approximations through properties
- Tentative definition through quotient
- Definition
- Results
(4) Approximations through averaging
(5) Overview of metrics and other approximations
- Metrics
- ϵ-bisimulation metric
- Approximation of probabilistic hybrid systems
- Conclusion

Metric defined as real valued logic

Definition

$\forall c \in(0,1]$, a family \mathcal{F}^{c} of functional expressions generated by

$$
f:=1|1-f|\langle a\rangle f\left|\min \left(f_{1}, f_{2}\right)\right| f \ominus q \mid \quad q \in \mathbb{Q}
$$

With the following semantics $f: \mathcal{S} \longrightarrow[0,1]$

$$
\begin{aligned}
\langle a\rangle f(s) & :=c \int_{S} f(t) P_{a}(s, d t) \\
f \ominus q(s) & :=\max (f(s)-q, 0)
\end{aligned}
$$

Definition

$$
d^{c}(s, t):=\sup _{f \in \mathcal{F}_{c}}|f(s)-f(t)|
$$

Papers on metric defined as real valued logic

- Metrics for labelled Markov processes, Desharnais, Gupta, Jagadeesan, Panangaden CONCUR '99 (and TCS 2004).
- The metric analogue of weak bisimulation for probabilistic processes, same authors, LICS '02.
- Approximating a behavioural pseudometric without discount, van Breugel, Sharma, Worrell FSTTCS '07.
- tutorial by Franck van Breugel at Bertinoro 2010 (available online).
- Game Relations and Metrics,
de Alfaro, Majumdar, Raman, Stoelinga, LICS '07.
- Algorithms for game metrics.

Chatterjee, de Alfaro, Majumdar, Raman, FSTTCS '08.

Papers on metric defined as real valued logic

- Metrics for labelled Markov processes, Desharnais, Gupta, Jagadeesan, Panangaden CONCUR '99 (and TCS 2004).
- The metric analogue of weak bisimulation for probabilistic processes, same authors, LICS '02.
- Approximating a behavioural pseudometric without discount, van Breugel, Sharma, Worrell FSTTCS '07.
- tutorial by Franck van Breugel at Bertinoro 2010 (available online).
- Game Relations and Metrics, de Alfaro, Majumdar, Raman, Stoelinga, LICS '07.
- Algorithms for game metrics, Chatterjee, de Alfaro, Majumdar, Raman, FSTTCS '08.

ϵ-simulation and ϵ-bisimulation

Definition

A relation $\mathcal{R} \subseteq S \times S$ is an ϵ-simulation if whenever $s \mathcal{R} t$, then $\forall a$, if $s \xrightarrow{a} \mu$, then $\exists t \xrightarrow{a} \nu$ such that for all $X \subseteq S$

$$
\mu(X) \leq \nu(\mathcal{R}(X))+\epsilon
$$

s is ϵ-simulated by t, written $s \prec_{\epsilon} t$, if $s \mathcal{R} t$ for some such \mathcal{R}. If \mathcal{R} is symmetric, it is an ϵ-bisimulation.

$$
\begin{aligned}
& s, \epsilon \stackrel{y}{a, 1-\epsilon} t \\
& \downarrow \\
& \bullet
\end{aligned}
$$

$$
s_{1} \xrightarrow[a, 1]{ } t_{1} \supset b, 1
$$

Then $s \prec_{0} s_{1}, s_{1} \nprec_{0} s$. and $s \not \chi_{0} s_{1}$.

ϵ-simulation and ϵ-bisimulation

Definition

A relation $\mathcal{R} \subseteq S \times S$ is an ϵ-simulation if whenever $s \mathcal{R} t$, then $\forall a$, if $s \xrightarrow{a} \mu$, then $\exists t \xrightarrow{a} \nu$ such that for all $X \subseteq S$

$$
\mu(X) \leq \nu(\mathcal{R}(X))+\epsilon
$$

s is ϵ-simulated by t, written $s \prec_{\epsilon} t$, if $s \mathcal{R} t$ for some such \mathcal{R}.
If \mathcal{R} is symmetric, it is an ϵ-bisimulation.

Then $s \prec_{0} s_{1}, s_{1} \nprec_{0} s$. and $s \not \chi_{0} s_{1}$.
But $s \prec_{\epsilon} s_{1}, s_{1} \prec_{\epsilon} s$. and $s \sim_{\epsilon} s_{1}$

The ϵ-semantics of logic \mathcal{L}.

Syntax:

$$
\begin{aligned}
\mathcal{L} & : \theta::=\top\left|\theta_{1} \wedge \theta_{2}\right| \theta_{1} \vee \theta_{2} \mid\langle a\rangle_{\delta} \theta, \text { with } \delta \in[0 ; 1] \\
\mathcal{L}_{\neg} & : \theta::=\mathcal{L} \mid \neg \theta .
\end{aligned}
$$

Semantics: let $\epsilon \in[-1 ; 1]$

\[

\]

- If $\epsilon \geq 0$ and $\phi \in \mathcal{L}$ then $\llbracket \phi \rrbracket_{-\epsilon} \subseteq \llbracket \phi \rrbracket \subseteq \llbracket \phi \rrbracket_{\epsilon}$
\square

The ϵ-semantics of logic \mathcal{L}.

Syntax:

$$
\begin{aligned}
\mathcal{L} & : \theta::=\top\left|\theta_{1} \wedge \theta_{2}\right| \theta_{1} \vee \theta_{2} \mid\langle a\rangle_{\delta} \theta, \text { with } \delta \in[0 ; 1] \\
\mathcal{L}_{\neg} & : \theta::=\mathcal{L} \mid \neg \theta .
\end{aligned}
$$

Semantics: let $\epsilon \in[-1 ; 1]$

$$
\begin{array}{ll}
s=_{\epsilon} \theta_{1} \wedge \theta_{2} & \text { iff } s=_{\epsilon} \theta_{1} \text { and } s \models_{\epsilon} \theta_{2} . \quad \text { (similarly for } \vee \text {). } \\
s=_{\epsilon} \neg \theta & \text { iff } s \not \models-\epsilon . \\
s \models_{\epsilon}\langle a\rangle_{\delta} \theta & \text { iff } \exists s \xrightarrow{a} \mu, \quad \mu\left(\llbracket \theta \rrbracket_{\epsilon}\right) \geq \delta-\epsilon \\
& \llbracket \theta \rrbracket_{\epsilon}=\left\{s \models_{\epsilon} \theta\right\} .
\end{array}
$$

- If $\epsilon \geq 0$ and $\phi \in \mathcal{L}$ then $\llbracket \phi \rrbracket_{-\epsilon} \subseteq \llbracket \phi \rrbracket \subseteq \llbracket \phi \rrbracket_{\epsilon}$.
- More generally, if $\epsilon_{1} \geq \epsilon_{2}$ then $\llbracket \phi \rrbracket_{\epsilon_{1}} \subseteq \llbracket \phi \rrbracket_{\epsilon_{2}}$.

Logical characterisations for fully probabilistic.

Definition (Logical simulation and bisimulation)

- $s \prec_{\epsilon}^{\mathcal{L}} t$ if for all $\theta \in \mathcal{L}$ we have $s \models \theta \Rightarrow t=_{\epsilon} \theta$.
- $\left.s \sim_{\epsilon}^{\mathcal{L}}\right\urcorner t$ if for all $\theta \in \mathcal{L}_{\checkmark}$ we have $s \models \theta \Rightarrow t \vDash{ }_{\epsilon} \theta$ (and reciprocally).

Theorem

For fully probabilistic PAs

- In general $s \prec_{\epsilon} t$ and $t \prec_{\epsilon} s$ does not imply $s \sim_{\epsilon} t$

Definition (Logical simulation and bisimulation)

- $s \prec_{\epsilon}^{\mathcal{L}} t$ if for all $\theta \in \mathcal{L}$ we have $s \models \theta \Rightarrow t \mid{ }_{\epsilon} \theta$.
- $\left.s \sim_{\epsilon}^{\mathcal{L}}\right\urcorner t$ if for all $\theta \in \mathcal{L}_{\checkmark}$ we have $s \models \theta \Rightarrow t \vDash{ }_{\epsilon} \theta$ (and reciprocally).

Theorem

For fully probabilistic PAs

- $s \prec_{\epsilon} t$ iff $s \prec_{\epsilon}^{\mathcal{L}} t$.
- $s \sim_{\epsilon} t$ iff $s \sim_{\epsilon}^{\mathcal{L}} \neg t$.
- In general $s \prec_{\epsilon} t$ and $t \prec_{\epsilon} s$ does not imply $s \sim_{\epsilon} t$.

Different metrics

- Approximate analysis of probabilistic processes: logic, simulation and games
Desharnais, Laviolette, Tracol, Qest 08. Very good complexity
Very different from others as probabilities are not multiplied through traces.
- Distances for Weighted Transition Systems: Games and Properties Fahrenberg, Thrane, Larsen QAPL '11.
- Testing Probabilistic Equivalence Through Reinforcement Learning Desharnais, Laviolette, Zhioua, FSTTCS '06. Very fast!!! and does not need the model

Approximation of probabilistic hybrid systems

- Analysis of Non-Linear Probabilistic Hybrid Systems, Desharnais, Assouramou, QAPL '11.
- clock translation \longrightarrow bisimilar timed automaton
- linear phase-portrait approximation \longrightarrow simulating rectangular HA
- Safety Verification for Probabilistic Hybrid Systems Zhang, She, Ratschan, Hermanns, Hahn, CAV '10.

Define a finite approximant or abstraction by quotienting, that over-approximate the original system.

Approximation of probabilistic hybrid systems [DA11]

A linear phase approx for some thermostat

Desirable properties of approximants? - The end

A countable family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less) all but one, the averaging scheme
- converge to \mathcal{S}
- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0 \quad$ all
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, it is its own approximant
- freeness to guide approximation w.r.t. some constraints all but one, $\mathcal{S}(n, \epsilon)$

Hybrid approximations are not constructed systematically but still satisfy some of these properties

Desirable properties of approximants? - The end

A countable family of finite-state systems that satisfy...

- below \mathcal{S}, or simulated by \mathcal{S} (may do less) all but one, the averaging scheme
- converge to \mathcal{S}
- as a sequence, w.r.t. some distance $d\left(\mathcal{S}_{i}, \mathcal{S}\right) \rightarrow 0 \quad$ all
- in properties: set of properties satisfied by \mathcal{S}_{i} increases to set of properties satisfied by \mathcal{S}
- If \mathcal{S} is finite, it is its own approximant
- freeness to guide approximation w.r.t. some constraints all but one, $\mathcal{S}(n, \epsilon)$

Hybrid approximations are not constructed systematically but still satisfy some of these properties.

