# Stochastic Hybrid Analysis of Markov Population Models

Verena Wolf, Saarland University





## Markov Chains with Population Structure

Queueing networks => many performance models of communication & computer networks

Models of chemical reaction networks



... (every Markov model with "counter variables", small jump distances, "densitydependent" transition rates)

## Deterministic Approximation

- popular tool: make state space continuous and approximate discrete jumps by continuous flow
- => mean-field approximation
- => fluid analysis
- => reaction rate equations
- => 1st order moment closure
- Approximation of the (co-)variances
- => 2nd order moment closure

## Deterministic Approximation

- popular tool: make state space continuous and approximate discrete jumps by continuous flow
- => mean-field approximation
- => fluid analysis
- => reaction rate equations
- => 1st order moment closure
- Approximation of the (co-)variances
- => 2nd order moment closure

#### but: what if discreteness matters???



State variables: promotor: free  $| X_1 \text{ bound } | X_2 \text{ bound}$  populations of  $X_1$  and  $X_2$ 

1 copy of each gene



1 copy of each gene

probability distribution at time 50



10 copies of each gene



10 copies of each gene

probability distribution at time 50



## Stochastic hybrid approach

- keep small populations discrete stochastic
- make large populations continuous (with stochastic or deterministic dynamics)



#### discrete state (MODE) changes of the promotor



discrete state (MODE) changes of the promotor



discrete state (MODE) changes of the promotor









#### one may add ODEs for the (co-)variances ...

## Outlook

- From multistep to hybrid simulation
- Transient numerical solution
- Steady-state solutions and stability analysis

# From Multistep to Hybrid Simulation

Several techniques for multistep simulation have been developed in the area of chemical kinetics

- T-leaping (Gillespie 2001, ...)
- Approximate Simulation (Haseltine and Rawlings 2002)
- Hybrid Stochastic Simulation (Salis and Kaznessis 2005)

Several techniques for multistep simulation have been developed in the area of chemical kinetics

- T-leaping (Gillespie 2001, ...)
- Approximate Simulation (Haseltine and Rawlings 2002)
- Hybrid Stochastic Simulation (Salis and Kaznessis 2005)

# For Monte-Carlo simulation discreteness is not a problem, but stiffness is!

## Multiscale Problem

For direct numerical simulations (= approximations of the probability distributions):

=> one may use a stochastic hybrid approach because

 populations are large, keeping variables discrete is expensive (state space explosion)
 model is stiff and simulation is very slow (step-size of numerical integration is too small)

often we have both!

#### Stiffness in Enzyme Kinetics



- Init t:=t<sub>0</sub>, x:=x<sub>0</sub> and t<sub>end</sub>;
- while t < t<sub>end</sub>
- 1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\cdots+\alpha_m(x)$ ;
- 2. Choose a step size  $\tau$  according to some appropriate rule;
- 3. Compute suitable estimates k<sub>1</sub>,...,k<sub>m</sub> for K<sub>1</sub>,...,K<sub>m</sub>;
- 4. Set  $t := t + \tau$  and update x as  $x=x+\Sigma v_i k_i$ .

time var system state

Init  $t:=t_0$ ,  $x:=x_0$  and  $t_{end}$ ;

while t < t<sub>end</sub>

1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\cdots+\alpha_m(x)$ ;

2. Choose a step size  $\tau$  according to some appropriate rule;

3. Compute suitable estimates k<sub>1</sub>,...,k<sub>m</sub> for K<sub>1</sub>,...,K<sub>m</sub>;

4. Set  $t := t + \tau$  and update x as  $x=x+\Sigma v_i k_i$ .

# $\begin{array}{l} \mbox{Multistep} s \\ \mbox{transition rate of type i} \\ \mbox{event (which changes the populations) e.g. chemical reaction, arrival of a} \\ \mbox{while t < t}_{end} \end{array}$

- 1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\cdots+\alpha_m(x)$ ;
- 2. Choose a step size  $\tau$  according to some appropriate rule;
- 3. Compute suitable estimates k<sub>1</sub>,...,k<sub>m</sub> for K<sub>1</sub>,...,K<sub>m</sub>;
- 4. Set  $t := t + \tau$  and update x as  $x=x+\Sigma v_i k_i$ .

- Init t:=t<sub>0</sub>, x:=x<sub>0</sub> and t<sub>end</sub>;
- while t < t<sub>end</sub>
- 1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\cdots+\alpha_m(x)$ ;
- 2. Choose a step size  $\tau$  according to some appropriate rule;
- 3. Compute suitable estimates k<sub>1</sub>,...,k<sub>m</sub> for K<sub>1</sub>,...,K<sub>m</sub>;
- 4. Set  $t := t + \tau$  and update x as  $x = x + \Sigma v_i k_i$ .

random var for number type i events within next T time units

- Init t:=t<sub>0</sub>, x:=x<sub>0</sub> and t<sub>end</sub>;
- while t < t<sub>end</sub>
- 1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\cdots+\alpha_m(x)$ ;
- 2. Choose a step size  $\tau$  according to some appropriate rule;
- 3. Compute suitable estimates k<sub>1</sub>,...,k<sub>m</sub> for K<sub>1</sub>,...,K<sub>m</sub>;
- 4. Set  $t := t + \tau$  and update x as  $x = x + \Sigma v_i k_i$ .

realizations of K<sub>1</sub>,...,K<sub>R</sub>

- Init t:=t<sub>0</sub>, x:=x<sub>0</sub> and t<sub>end</sub>;
- while t < t<sub>end</sub>
- 1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\cdots+\alpha_m(x)$ ;
- 2. Choose a step size  $\tau$  according to some appropriate rule;
- 3. Compute suitable estimates k<sub>1</sub>,...,k<sub>m</sub> for K<sub>1</sub>,...,K<sub>m</sub>;
- 4. Set  $t := t + \tau$  and update x as  $x=x+\Sigma v_i k_i$ .

change vector of type i events

Init t:=t<sub>0</sub>, x:=x<sub>0</sub> and t<sub>end</sub>; while t < t<sub>end</sub> 1. Compute all  $\alpha_i(x)$  and  $\alpha(x)$ := $\alpha_1(x)$ +···+ $\alpha_m(x)$ ; 2. Choose a step size  $\tau$  according to some appropriate rule; 3. Compute suitable estimates k<sub>1</sub>,...,k<sub>R</sub> for K<sub>1</sub>,...,K<sub>R</sub>; 4. Set t := t +  $\tau$  and update x as x=x+ $\Sigma v_i k_i$ .

direct multistepping: use Poisson distribution (parameter α<sub>i</sub>(x)τ) to estimate k<sub>1</sub>,...,k<sub>R</sub> explicit T-leaping: choose time step such that rates do not change mych (Gillespie 2001)

## Hybrid simulation

Init t:=t<sub>0</sub>, x:=x<sub>0</sub> and t<sub>end</sub>; while t < t<sub>end</sub> 1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\dots+\alpha_m(x)$ ; 2. Choose a step size  $\tau$  according to some appropriate rule; 3. Compute suitable estimates k<sub>1</sub>,...,k<sub>R</sub> for K<sub>1</sub>,...,K<sub>R</sub>; 4. Set t := t +  $\tau$  and update x as x=x+ $\Sigma v_i k_i$ .

If the parameter  $\alpha_i(x)\tau$  of the Poisson distribution is large ( $\alpha_i(x)\tau >> 1$ ), then it tends to a normal distribution with mean  $\alpha_i(x)\tau$  and variance  $\alpha_i(x)\tau$  (Gillespie 2002). If we forget about the variance, we just use  $\alpha_i(x)\tau$ => deterministic approximation

## Hybrid simulation

Init t:= $t_0$ , x:= $x_0$  and  $t_{end}$ ; while t < tend 1. Compute all  $\alpha_i(x)$  and  $\alpha(x):=\alpha_1(x)+\cdots+\alpha_m(x)$ ; 2. Choose a step size  $\tau$  according to some appropriate rule; usually the case if reactant  $k_1, \dots, k_R$  for  $K_1, \dots, K_R$ ; as x=x+Σviki. populations are large If the parameter  $\alpha_i(x)\tau$  of the Poisson distribution is large  $(\alpha_i(x) \tau \gg 1)$ , then it tends to a normal distribution with mean  $\alpha_i(x)\tau$  and variance  $\alpha_i(x)\tau$  (Gillespie 2002). If we forget about the variance, we just use  $\alpha_i(x)\tau$ => deterministic approximation

How long do we stay in a mode until we change the mode?



$$d/dt x_1 = k_1 - d_1 x_1 + u_1$$
  
 $d/dt x_2 = -d_2 x_2$ 

for mode A: exit rate λ=u1 is independent of evolution of x1 and x2 => exponential distributed delay with parameter -u1

How long do we stay in a mode until we change the mode?



How long do we stay in a mode until we change the mode?

 $\lambda(s) = b_1 x_1(s) + b_2 x_2(s)$ but the evolution of  $x_1(s)$  and  $x_2(s)$  during  $[t,t+\tau]$  is apriori not known => exploit that for  $F(t') = P(\tau > t')$ 8.0 0.6<sup>↓</sup> (s) ⊔  $\frac{d}{ds}F(s) = \lambda(s)F(s)$ 0.4 0.2 and F(0) = 1

0

22

2

4

S

6

8

10

How long do we stay in a mode until we change the mode?

 $\lambda(s) = b_1 x_1(s) + b_2 x_2(s)$ but the evolution of  $x_1(s)$  and  $x_2(s)$  during  $[t,t+\tau]$  is apriori not known => exploit that for  $F(t') = P(\tau > t')$ 8.0 0.6 uniform  $\frac{d}{ds}F(s) = \lambda(s)F(s)$ random number U and F(0) = 10 2 4 6 8 10 22 S

#### Hybrid simulation

Init t:= $t_0$ , x:= $x_0$ , m:= $m_0$ , and  $t_{end}$ ; while t < tend 1. Pick uniformly distributed random number U; 2. Integrate x using ODEs of current mode; simultaneously integrate F(s) with initial condition F(0)=1; 3. Stopp integration at time  $\tau$  where F( $\tau$ )=U; 4. Decide for next mode accoring to jump rates of current mode m: 5. Set  $t := t+\tau$  (and update x according to mode switch)

only of discrete jump rates are not part of ODEs

#### Transient numerical solution

#### Transient numerical solution

Why do we care about numerical solutions if Monte-Carlo simulation works well?

- compute the whole probability distribution
- compute probabilities of rare events
- calibrate parameters w.r.t. observations

=> force simulation method to explore certain interesting parts of the state space (even if they are unlikely)!

## PDE of the PDF

single continuous variable:



see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

## PDE of the PDF

single continuous variable:

 $p_{i}(t,x) = \frac{1}{\Delta} \lim_{\Delta \to 0} P(M(t) = i, x < X(t) < x + \Delta)$ continuous variable for protein concentration  $\frac{\partial}{\partial t}p(x,t) + \frac{\partial}{\partial x}p(x,t)R(x) = p(t,x)Q(x)$ ODE rates of protein dynamics jump rates for switching modes

see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

## PDE of the PDF

single continuous variable:



see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

Numerical Solution => either discretize continuous part of state space and integrate PDE or ...

Numerical Solution Algorithm (Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:

 large populations -> deterministic/continuous (DC) dynamics given by ODE (depend on mode) (also possible with more moments than just 1st) Numerical Solution Algorithm (Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:

- large populations -> deterministic/continuous (DC) dynamics given by ODE (depend on mode) (also possible with more moments than just 1st)
- small populations -> stochastic/discrete (SD) modes; dynamics given by (small) Markov chain

#### Numerical Solution Algorithm (Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:

- large populations -> deterministic/continuous (DC) dynamics given by ODE (depend on mode) (also possible with more moments than just 1st)
- small populations -> stochastic/discrete (SD) modes; dynamics given by (small) Markov chain
  - may switch representations over time





Given at time t: probabilities  $p_A+p_B+p_C=1$ and conditional expectations  $x_i^A, x_i^B, x_i^C$  (i=1,2)









3) ``correct" condition in  $x_i^A(t+h), x_i^B(t+h), x_i^C(t+h)$  by taking into account that state is left during [t,t+h]



Result at t+h: new probabilities  $p_A(t+h), p_B(t+h), ...$ and new conditional expect.  $x_i^A(t+h), x_i^B(t+h), ...$ 

- 1) integrate mode probabilities for h time units
- 2) integrate conditional expectations of all modes
- for h time units
- 3) correct values obtained in 2) as follows:
- E[Xi(t+h) | in mode A at time t+h] ≈
- $\Sigma_{mode B}$  (inflow from B)\*(value obtained in 2) for B) / (total inflow to A)

#### How to integrate approachs developed for systems with small

- 1) integrate mode probabilities for n time units
- 2) integrate conditional expectations of all modes
- for h time units
- 3) correct values obtained in 2) as follows:
- E[Xi(t+h) | in mode A at time t+h] ≈
- $\Sigma_{mode B}$  (inflow from B)\*(value obtained in 2) for B) / (total inflow to A)

- 1) integrate mode probabilities for h time units
- 2) integrate conditional expectations of all modes
- for h time units

----

value obtained under the

- 3) correct values obtained in 2 in mode during [t,t+h)
- E[Xi(t+h) | in mode A at time t+h] ≈
- $\Sigma_{mode B}$  (inflow from B)\*(value obtained in 2) for B) / (total inflow to A)

- 1) integrate mode probabilities for h time units
- 2) integrate conditional expectations of all modes
- for h time units
- 3) correct values obtained in 2) as follows:
- E[Xi(t+h) | in mode A at time t+h] ≈
- $\Sigma_{mode B}$  (inflow from B)\*(value obtained in 2) for B) / (total inflow to A)

#### Probability flow from B to A during [t,t+h)

### Experimental Results

#### Results for exclusive switch



Use moment-based representation for proteins  $X_1$  and  $X_2$  when population reaches 50 or 100.

#### -> SHAVE DEMO

## Solving the PDE by discretization



## Solving the PDE by discretization



#### Aggregation vs. Flow Approximation

assume that cells are (macro) states of a new (reduced) Markov chain

assume exponential distribution for jumps between macro states

true distribution is phase type => in general variance increases if number of phases is reduced to one

=> works only well in certain cases

safe way:

approximate probability flow between cells and numerically integrate PDE

see e.g. "Fokker-Planck approximation of the master equation in molecular biology" by Sjöberg, Lötstedt, Elf

# Steady-state solutions and stability analysis

#### Example: Exclusive Switch



#### Equilibrium points of mode ODEs:



Does this help for locating equilibrium probabilities of the Markov chain?

#### High Binding Rate

equilibrium of mode A and C at (100,0) and (0,100)



equilibrium point of mode B:

(5,5)

#### Low Binding Rate

equilibrium of mode A and C at (120,0) and (0,120)



#### Low Binding Rate

equilibrium of mode A and C at (120,0) and (0,120)



#### Asymmetric Binding Rate

equilibrium of mode A and C at (120,0) and (0,100)



Montag, 5. September 2011

# Stability Analysis

In order to decide whether a system is multistable and where the attractors are located:

in general equilibrium points of modes are not enough information

one has to compute/approximate the steady-state probability density

### Steady-state probability density

$$\frac{\partial}{\partial t} p(x,t) + \frac{\partial}{\partial x} p(x,t) R(x) = p(t,x)Q(x)$$

Problem: no initial conditions are known

=> find values of x where density is zero!
=> solve PDE w.r.t. these side conditions
(derivation of side conditions is still and open
problem)

=> alternatively, run the system transiently until convergence of distribution

# Conclusions

- for many systems, a hybrid approach is the right way to go (switch variables!)
- fluidization of large populations gives huge computational benefits (both for Monte-Carlo and numerical simulations)
- Efficient approaches for stability analysis are still missing
- Efficient approaches for parameter estimation are still missing