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Markov Chains with 
Population Structure

Queueing networks => many performance 
models of communication & computer 
networks

Models of chemical                       
reaction networks

... (every Markov model with "counter 
variables", small jump distances, "density-
dependent" transition rates)
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Deterministic Approximation
popular tool: make state space continuous and approximate 
discrete jumps by continuous flow

=> mean-field approximation
=> fluid analysis

=> reaction rate equations 
=> 1st order moment closure

Approximation of the (co-)variances 
=> 2nd order moment closure
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Deterministic Approximation
popular tool: make state space continuous and approximate 
discrete jumps by continuous flow

=> mean-field approximation
=> fluid analysis

=> reaction rate equations 
=> 1st order moment closure

Approximation of the (co-)variances 
=> 2nd order moment closure

but: what if discreteness matters???
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Example: Exclusive Switch

State variables:
promotor:  free  |  X1 bound  |  X2 bound
populations of X1 and X2 

P1 P2

P1 or P2
but not both

gene 1 gene 2common
promotor

v1 v2 v3

c5 · ψv1(1, t)

c7

c6 · ψv1(2, t)

c8

1

Figure 1: Illustration of the exclusive switch in Ex. 1
(picture is adapted from [22]). The stochastic hybrid
model with only three discrete stochastic states and
two differential equations per state.

As rigorously derived by Gillespie [10], each reaction type
has an associated propensity function, denoted by α1, . . . , αm,
which is such that αj(x) · dt is the probability that, given
X(t) = x, one instance of the j-th reaction occurs within
[t, t + dt). The value αj(x) is proportional to the number of
distinct reactant combinations in state x. More precisely, if
x = (x1, . . . , xn) is a state for which x + u−j is nonnegative
then

αj(x) =

8
>><

>>:

cj if u−j = (0, . . . , 0),
cj · xi if u−j = −ei,
cj · xi · x� if u−j = −ei − e�,

cj ·
`

xi
2

´
= cj · xi·(xi−1)

2 if u−j = −2 · ei,

(1)

where i �= �, cj > 0 is a constant, and ei is the vector with
the i-th entry 1 and all other entries 0. We set αj(x) = 0
whenever the vector x + u−j contains negative entries, that
is, when not enough reactant molecules are available. The
constant cj refers to the rate at which a randomly selected
pair of reactants collides and undergoes the j-th chemical re-
action. Thus, if N is the volume (in liters) times Avogadro’s
number, then cj

• scales inversely with N in the case of two reactants,
• is independent of N in the case of a single reactant,
• is proportional to N in the case of no reactants.
Since reactions of higher order (requiring more than two
reactants) are usually the result of several successive lower
order reactions, we do not consider the case of more than
two reactants.

Example 1. We consider a gene regulatory network, called
the exclusive switch [22]. It consists of two genes with a com-
mon promotor region. Each of the two gene products P1 and
P2 inhibits the expression of the other product if a molecule
is bound to the promotor region. More precisely, if the pro-
motor region is free, molecules of both types P1 and P2 are
produced. If a molecule of type P1 (P2) is bound to the pro-
motor region, only molecules of type P1 (P2) are produced,
respectively. We illustrate the network in Fig. 1. The sys-
tem has five chemical species of which two have an infinite
range, namely P1 and P2. If x = (x1, . . . , x5) is the current
state, then the first two entries represent the populations of
P1 and P2, respectively. The entry x3 denotes the number
of unbound DNA molecules which is either zero or one. The
entry x4 (x5) is one if a molecule of type P1 (P2) is bound
to the promotor region and zero otherwise. The chemical
reactions are as follows. Let j ∈ {1, 2}.

• We describe production of Pj by DNA → DNA+Pj. Thus,
uj = ej − e3 + e3 and αj(x) = cj · x3.

• We describe degradation of Pj by Pj → ∅ with uj+2 = −ej

and αj+2(x) = cj+2 · xj.

• We model the binding of Pj to the promotor by DNA +
Pj → DNA.Pj with uj+4 = −ej−e3+ej+3 and αj+4(x) =
cj+4 · xj · x3.

• For unbinding of Pj we use DNA.Pj → DNA + Pj with
uj+6 = ej + e3 − ej+3 and αj+6(x) = cj+6 · xj+3.

• Finally, we have production of Pj if a molecule of type Pj

is bound to the promotor, i.e., DNA.Pj → DNA.Pj + Pj

with uj+8 = ej − ej+3 + ej+3 and αj+8(x) = cj+8 · xj+3.
Depending on the chosen parameters, the probability distri-
bution of the exclusive switch is bistable, i.e. most of the
probability mass concentrates on two distinct regions in the
state space. In particular, if binding to the promotor is likely,
then these two regions correspond to the two configurations
where either the production of P1 or the production of P2 is
inhibited. We illustrate the dynamics of the exclusive switch
in Fig. 2 by plotting the probability distribution for two dif-
ferent parameter combinations.

The Chemical Master Equation. For x ∈ Zn
+ and

t ≥ 0, let p(x, t) denote the probability that the current pop-
ulation vector is x, i.e., p(x, t) = Pr(X(t) = x). Let p(t)
be the row vector with entries p(x, t). Given u−1 , . . . ,u−m,
u+

1 , . . . ,u+
m, α1, . . . , αm, and some initial distribution p(0),

the Markov chain X is uniquely specified if the propensity
functions are of the form in Eq. (1). The evolution of X
is given by the chemical master equation (CME), which
equates the change d

dtp(x, t) of the probability in state x
and the sum over all reactions of the “inflow” αj(x − uj) ·
p(x− uj , t) and “outflow” αj(x) · p(x, t) of probability [20].
Thus,

d
dt

p(x, t) =
mX

j=1

`
αj(x−uj)·p(x−uj , t)−αj(x)·p(x, t)

´
. (2)

Since the CME is linear it can be written as d
dtp(t) = p(t)·Q,

where Q is the generator matrix of X with Q(x,x + uj) =
αj(x) and Q(x,x) = −

Pm
j=1 αj(x). If Q is bounded (i.e.,

its norm is finite), then Eq. (2) has the general solution

p(t) = p(0) · eQt, (3)

where, for finite Q, the matrix exponential is defined as

eQt =
P∞

i=0
(Qt)i

i! . If the state space is infinite, then we
can compute approximations of p(t) and even if Q is fi-
nite, the size of the matrix Q is often large because it grows
exponentially with the number of state variables. More-
over, even if Q is sparse, as it usually is because the num-
ber of reaction types is small compared to the number of
states, standard numerical solution techniques for systems
of first-order linear equations of the form of Eq. (2), such
as uniformization [19], approximations in the Krylov sub-
space [28], or numerical integration [33], are infeasible. The
reason is that the number of nonzero entries in Q often ex-
ceeds the available memory capacity for systems of realistic
size. If the populations of all species remain small (at most
a few hundreds) and the dimension is low then the solution
of the CME can be efficiently approximated using projection
methods [3, 16, 25] or fast uniformization methods [5, 6, 32].
The idea of these methods is to avoid an exhaustive state
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Example: Exclusive Switch
1 copy of each gene
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Example: Exclusive Switch
1 copy of each gene

probability
distribution 
at time 50
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Example: Exclusive Switch
10 copies of each gene
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Example: Exclusive Switch
10 copies of each gene

probability
distribution 
at time 50
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Stochastic hybrid approach

• keep small populations discrete stochastic

• make large populations continuous (with 
stochastic or deterministic dynamics)
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Example: Exclusive Switch

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

u1 

u2 

discrete state (MODE) changes of the promotor

10

b1X1

b2X2
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d/dt X1=k1 -d1X1 +u1
d/dt X2=k2 -d2X2+u2

Example: Exclusive Switch

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

u1 

u2 

ODE

discrete state (MODE) changes of the promotor

10

b1X1

b2X2
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d/dt X1=k1 -d1X1 +u1
d/dt X2=k2 -d2X2+u2

Example: Exclusive Switch

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

u1 

u2 

ODE

discrete state (MODE) changes of the promotor

include updates of 
discrete jumps in ODE 

if populations are 
large => continuous 

trajectories
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Example: Exclusive Switch

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

11

u1 

u2 b1X1

b2X2
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Example: Exclusive Switch

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

d/dt X1=k1-d1X1-b1X1
d/dt X2=k2-d2X2-b2X2

ODE

11

u1 

u2 b1X1

b2X2
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Example: Exclusive Switch

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

d/dt X1=k1 -d1X1+u1
d/dt X2=k2-d2X2+u2

ODE

11

u1 

u2 b1X1

b2X2
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Example: Exclusive Switch

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

d/dt X1=k1 -d1X1+u1
d/dt X2=k2-d2X2+u2

ODE

one may add ODEs for the (co-)variances ...
11

u1 

u2 b1X1

b2X2
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Outlook

• From multistep to hybrid simulation 

• Transient numerical solution

• Steady-state solutions and stability 
analysis

12
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From Multistep to 
Hybrid Simulation 
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Multistep Simulation

• τ-leaping (Gillespie 2001, ...)

• Approximate Simulation (Haseltine and 
Rawlings 2002)

• Hybrid Stochastic Simulation (Salis and 
Kaznessis 2005)

• ...

Several techniques for multistep simulation have 
been developed in the area of chemical kinetics

14
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Multistep Simulation

• τ-leaping (Gillespie 2001, ...)

• Approximate Simulation (Haseltine and 
Rawlings 2002)

• Hybrid Stochastic Simulation (Salis and 
Kaznessis 2005)

• ...

Several techniques for multistep simulation have 
been developed in the area of chemical kinetics

For Monte-Carlo simulation discreteness is not a 
problem, but stiffness is! 
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For direct numerical simulations (= approximations 
of the probability distributions):

=> one may use a stochastic hybrid approach 
because 
(1) populations are large, keeping variables 
discrete is expensive (state space explosion)
(2) model is stiff and simulation is very slow 
(step-size of numerical integration is too small)

often we have both!

Multiscale Problem

15
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Stiffness in Enzyme Kinetics

E + S
c1−→ C

C
c2−→ E + S

C
c3−→ E + P

X(t) = (X1(t), . . . , Xn(t))many complex 
formations/dissociations 

must occur until a 
product is formed
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Multistep simulation

Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,km for K1,...,Km; 
4. Set t := t + τ and update x as x=x+∑viki.
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Multistep simulation

Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,km for K1,...,Km; 
4. Set t := t + τ and update x as x=x+∑viki.

system statetime var

17

Montag, 5. September 2011



Multistep simulation

Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,km for K1,...,Km; 
4. Set t := t + τ and update x as x=x+∑viki.

transition rate of type i 
event (which changes the 
populations) e.g. chemical 
reaction, arrival of a 
customer

17
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Multistep simulation

Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,km for K1,...,Km; 
4. Set t := t + τ and update x as x=x+∑viki.

random var for 
number type i 
events within 
next τ time units17
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Multistep simulation

Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,km for K1,...,Km; 
4. Set t := t + τ and update x as x=x+∑viki.

realizations
of K1,...,KR 
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Multistep simulation

Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,km for K1,...,Km; 
4. Set t := t + τ and update x as x=x+∑viki.

change vector of 
type i events 

17
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Multistep simulation

Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,kR for K1,...,KR; 
4. Set t := t + τ and update x as x=x+∑viki.

direct multistepping: use Poisson distribution 
(parameter αi(x)τ) to estimate k1,...,kR

explicit τ-leaping: choose time step such that 
rates do not change much (Gillespie 2001)18
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Hybrid simulation
Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,kR for K1,...,KR; 
4. Set t := t + τ and update x as x=x+∑viki.

If the parameter αi(x)τ of the Poisson distribution is 
large (αi(x)τ >> 1), then it tends to a normal distribution 
with mean αi(x)τ and variance αi(x)τ (Gillespie 2002).
If we forget about the variance, we just use αi(x)τ

=> deterministic approximation  
19
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Hybrid simulation
Init t:=t0, x:=x0 and tend; 
while t < tend

1. Compute all αi(x) and α(x):=α1(x)+···+αm(x); 
2. Choose a step size τ according to some 
appropriate rule; 
3. Compute suitable estimates k1,...,kR for K1,...,KR; 
4. Set t := t + τ and update x as x=x+∑viki.

If the parameter αi(x)τ of the Poisson distribution is 
large (αi(x)τ >> 1), then it tends to a normal distribution 
with mean αi(x)τ and variance αi(x)τ (Gillespie 2002).
If we forget about the variance, we just use αi(x)τ

=> deterministic approximation  

usually the case if reactant 
populations are large
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Stochastic Hybrid Simulation
How long do we stay in a mode until we 
change the mode?

d/dt x1=k1-d1x1+u1
d/dt x2=  -d2x2

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

u1 b2x2 

u2 b1x1 

mode A

for mode A:
exit rate λ=u1 is independent 

of evolution of x1 and x2

=> exponential distributed 
delay with parameter -u1
20
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Stochastic Hybrid Simulation
How long do we stay in a mode until we 
change the mode?

d/dt x1=k1-d1x1+b1x1
d/dt x2=k2-d2x2+b2x2

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

u1 b2x2 

u2 b1x1 

mode B

for mode B: exit rate 
λ(s)=b1x1(s)+b2x2(s) 

=> delay τ such that 

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

X
c1−→ 2X

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

X(t) = (X1(t), . . . , Xn(t))

c1 · 10 · 10 · dt

P (τ > t�) = exp

�
−
� t+t�

t

λ(s)ds

�

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)

21
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Stochastic Hybrid Simulation
How long do we stay in a mode until we 
change the mode?

λ(s)=b1x1(s)+b2x2(s) 
but the evolution of x1(s) and x2(s) during [t,t+τ] is 
apriori not known =>
exploit that for F(t')= P(τ>t')

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

2A → B

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

=const

c1 · 10 · 10 · dt
d

ds
F (s) = λ(s)F (s)

xA
1 = k1+u1

d1
xA
2 = 0

xB
1 = k1

d1+b1
xB
2 = k2

d2+b2

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

2A → B

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

=const

c1 · 10 · 10 · dt
d

ds
F (s) = λ(s)F (s)

F (0) = 1

xB
1 = k1

d1+b1
xB
2 = k2

d2+b2

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)

and
0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

s

F(
s)
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Stochastic Hybrid Simulation
How long do we stay in a mode until we 
change the mode?

λ(s)=b1x1(s)+b2x2(s) 
but the evolution of x1(s) and x2(s) during [t,t+τ] is 
apriori not known =>
exploit that for F(t')= P(τ>t')

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

2A → B

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

=const

c1 · 10 · 10 · dt
d

ds
F (s) = λ(s)F (s)

xA
1 = k1+u1

d1
xA
2 = 0

xB
1 = k1

d1+b1
xB
2 = k2

d2+b2

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

2A → B

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

=const

c1 · 10 · 10 · dt
d

ds
F (s) = λ(s)F (s)

F (0) = 1

xB
1 = k1

d1+b1
xB
2 = k2

d2+b2

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)

and
0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

s

F(
s)uniform

random 
number U
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Hybrid simulation
Init t:=t0, x:=x0, m:=m0, and tend; 
while t < tend

1. Pick uniformly distributed random number U;
2. Integrate x using ODEs of current mode; 
simultaneously integrate F(s) with initial condition F(0)=1; 
3. Stopp integration at time τ where F(τ)=U; 
4. Decide for next mode accoring to jump rates of 
current mode m;
5. Set t := t+τ (and update x according to mode switch)

only of discrete jump rates are not part of ODEs

23
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Transient numerical solution

24
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Transient numerical solution
Why do we care about numerical solutions if 
Monte-Carlo simulation works well?

- compute the whole probability distribution

- compute probabilities of rare events

- calibrate parameters w.r.t. observations

=> force simulation method to explore 
certain interesting parts of the state space 
(even if they are unlikely)!

25
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PDE of the PDF

∂
∂tp(x, t) +

∂
∂xp(x, t)R(x) = p(t, x)Q(x)

single continuous variable:
pi(t, x) =

1

∆
lim
∆→0

P (M(t) = i, x < X(t) < x+∆)

mode i
continuous variable 

for protein concentration

see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

26
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jump rates for 
switching modes

PDE of the PDF

∂
∂tp(x, t) +

∂
∂xp(x, t)R(x) = p(t, x)Q(x)

single continuous variable:
pi(t, x) =

1

∆
lim
∆→0

P (M(t) = i, x < X(t) < x+∆)

mode i
continuous variable 

for protein concentration

ODE rates of 
protein dynamics

see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998
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jump rates for 
switching modes

PDE of the PDF

∂
∂tp(x, t) +

∂
∂xp(x, t)R(x) = p(t, x)Q(x)

single continuous variable:
pi(t, x) =

1

∆
lim
∆→0

P (M(t) = i, x < X(t) < x+∆)

mode i
continuous variable 

for protein concentration

ODE rates of 
protein dynamics

see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

Numerical Solution => either discretize continuous 
part of state space and integrate PDE or ...

26
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Numerical Solution Algorithm
(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:  

• large populations -> deterministic/continuous (DC)    
dynamics given by ODE (depend on mode)          
(also possible with more moments than just 1st)       
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Numerical Solution Algorithm
(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:  

• large populations -> deterministic/continuous (DC)    
dynamics given by ODE (depend on mode)          
(also possible with more moments than just 1st)       

• small populations -> stochastic/discrete (SD) 
modes; dynamics                                  
given by (small)                                  
Markov chain
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Numerical Solution Algorithm
(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)

In general, split population vector:  

• large populations -> deterministic/continuous (DC)    
dynamics given by ODE (depend on mode)          
(also possible with more moments than just 1st)       

• small populations -> stochastic/discrete (SD) 
modes; dynamics                                  
given by (small)                                  
Markov chain

➡ may switch represen-                           
tations over time
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(a) Sustained oscillations of the deterministic Lotka-Volterra model.
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(b) Expected populations in the stochastic Lotka-Volterra model.

Fig. 1. ODE solution and Hybrid Monte-Carlo simulation of the Lotka-Volterra model.

In Fig. 2(a) we plot the estimated distribution of the time
until extinction of predator. We obtained the results from 106

simulation runs where we terminated the simulation whenever
y = 0. The computer time needed for 106 simulation runs
was 23 minutes. Fig. 2(b) shows the relative half-width of
the corresponding confidence intervals (where we set the
relative half-width to one if the corresponding value has not
been observed during simulation). Note that the relative half-
width is typically used as an error estimate for Monte-Carlo
simulation [1]. The probability of extinction is high in the
time intervals [1, 6], [10, 13], [18, 22] and [26, 29] while in
the remaining intervals it is close to zero. For instance, for
t ∈ [5, 8] the probability of extinction is estimated as zero.
Clearly, the results become less accurate if the probability is
small since for certain time intervals extinction is a rare event.

B. Hybrid Monte-Carlo simulation
Assume now that at some point during the above simulation

y = 0. Then the second and the third transition become
impossible and in each step the first transition is chosen. Thus,
the value of x increases which makes the time step τ smaller
and smaller. Thus, depending on the chosen parameters it
is likely that the running time needed for the generation of
a single trajectory takes days, weeks, or is even infeasible.
Note that independent of the parameters the extinction of
predator has a positive probability. In the limit (as t → ∞) x
will approach infinity. Thus, the stationary distribution of this
Markov process does not exist [13].
We suggest a simple extension of the simulation procedure

that avoids in the case of extinction of predator that the time
steps become smaller and smaller. In each step of the iteration
we test whether y = 0 and if so we exit the loop and
approximate the growth of x with the differential equation
dx
dt

= αx. Thus, if x̃ > 0 is the population size of prey
when y = 0 for the first time (say at time t̃) then we set
x(t + t̃) = x̃ · eαt for all t ≥ 0. Note that this approximation
assumes that after time t̃ the prey population is a continuous
and deterministic value. This assumption is realistic if the
prey population is large. Since for most parameters this is
exactly the case when the predator population is small, the
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1.4x 10−3

(a) The estimated probability distribution.
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(b) The relative half widths of the corresponding confidence intervals.

Fig. 2. The time until extinction obtained by standard Monte-Carlo
simulation.

approximation yields accurate results in most cases1.
In Fig. 1(b) we plot the mean of prey and predator until time

t = 10. The results are obtained from the hybrid Monte-Carlo
simulation of the stochastic Lotka-Volterra model. We run
simulation until the relative half width of the corresponding
confidence intervals were at most 5% for a confidence level
of 95% which took about 4 seconds. Note that after t = 6 the
prey population increases exponentially and reaches a size of

1An example where this approximation may not be accurate is the case
where initially both populations are small and the extinction of predator occurs
in a short time
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How to integrate over time?

b1x1B 

u1 

u2 

d/dt x1=k1-d1x1-u1
d/dt x2=  -d2x2

d/dt x1=k1-d1x1 -b1x1
d/dt x2=k2-d2x2-b2x2

d/dt x1=   -d1x1
d/dt x2=k2-d2x2-u2

pA; x1A; x2A

Given at time t: probabilities pA+pB+pC=1 
      and conditional expectations xiA,xiB,xiC  (i=1,2)

mode A mode B

pB; x1B; x2B pC; x1C; x2C

b2x2B mode C
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b1x1B 

u1 

u2 

d/dt x1=k1-d1x1-u1
d/dt x2=  -d2x2

d/dt x1=k1-d1x1 -b1x1
d/dt x2=k2-d2x2-b2x2

d/dt x1=   -d1x1
d/dt x2=k2-d2x2-u2

pA; x1A; x2A

mode A mode B

pB; x1B; x2B pC; x1C; x2C

b2x2B mode C

1) integrate probability distribution for small [t,t+h] 
   pA(t) --> pA(t+h)    pB(t) --> pB(t+h)   .... 

How to integrate over time?
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b1x1B 

u1 

u2 

d/dt x1=k1-d1x1-u1
d/dt x2=  -d2x2

d/dt x1=k1-d1x1 -b1x1
d/dt x2=k2-d2x2-b2x2

d/dt x1=   -d1x1
d/dt x2=k2-d2x2-u2

pA; x1A; x2A

mode A mode B

pB; x1B; x2B pC; x1C; x2C

b2x2B mode C

1) integrate probability distribution for small [t,t+h] 
   pA(t) --> pA(t+h)    pB(t) --> pB(t+h)   .... 

update depends on 
conditional expectation

How to integrate over time?
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b1x1B 

u1 

u2 

d/dt x1=k1-d1x1-u1
d/dt x2=  -d2x2

d/dt x1=k1-d1x1 -b1x1
d/dt x2=k2-d2x2-b2x2

d/dt x1=   -d1x1
d/dt x2=k2-d2x2-u2

pA; x1A; x2A

mode A mode B

pB; x1B; x2B pC; x1C; x2C

b2x2B mode C

2) integrate conditional expect. for small [t,t+h] 
   xiA(t) --> xiA(t+h)    xiB(t) --> xiB(t+h)   .... 

How to integrate over time?
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b1x1B 

u1 

u2 

d/dt x1=k1-d1x1-u1
d/dt x2=  -d2x2

d/dt x1=k1-d1x1 -b1x1
d/dt x2=k2-d2x2-b2x2

d/dt x1=   -d1x1
d/dt x2=k2-d2x2-u2

pA; x1A; x2A

mode A mode B

pB; x1B; x2B pC; x1C; x2C

b2x2B mode C

3) ``correct'' condition in xiA(t+h),xiB(t+h),xiC(t+h) by
taking into account that state is left during [t,t+h]

How to integrate over time?
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b1x1B 

u1 

u2 

d/dt x1=k1-d1x1-u1
d/dt x2=  -d2x2

d/dt x1=k1-d1x1 -b1x1
d/dt x2=k2-d2x2-b2x2

d/dt x1=   -d1x1
d/dt x2=k2-d2x2-u2

pA; x1A; x2A

Result at t+h: new probabilities pA(t+h),pB(t+h),... 
and new conditional expect. xiA(t+h),xiB(t+h), ....

mode A mode B

pB; x1B; x2B pC; x1C; x2C

b2x2B mode C

How to integrate over time?
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How to integrate over time?
1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes 
for h time units
3) correct values obtained in 2) as follows:
 E[Xi(t+h) | in mode A at time t+h] ≈ 
∑mode B (inflow from B)*(value obtained in 2) for B) / 
(total inflow to A)
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How to integrate over time?
1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes 
for h time units
3) correct values obtained in 2) as follows:
 E[Xi(t+h) | in mode A at time t+h] ≈ 
∑mode B (inflow from B)*(value obtained in 2) for B) / 
(total inflow to A)

use numerical 
approachs developed 
for systems with small 
populations here
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How to integrate over time?
1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes 
for h time units
3) correct values obtained in 2) as follows:
 E[Xi(t+h) | in mode A at time t+h] ≈ 
∑mode B (inflow from B)*(value obtained in 2) for B) / 
(total inflow to A)

value obtained under the 
assumption of remaining 
in mode during [t,t+h)
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How to integrate over time?
1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes 
for h time units
3) correct values obtained in 2) as follows:
 E[Xi(t+h) | in mode A at time t+h] ≈ 
∑mode B (inflow from B)*(value obtained in 2) for B) / 
(total inflow to A)

Probability flow from 
B to A during [t,t+h)
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Results for exclusive switch

Use moment-based representation for proteins X1 
and X2 when population reaches 50 or 100.

hybrid ODE
purley
discrete

Experimental Results 

pset ex. time |Sig | error pop. thres. ex. time |Sig | m1 m2 m3 ex. time m1
1 4h 51min 2 · 105 4 · 10−5 50 25sec 4 · 102 0.06 0.08 0.09 1sec 0.45

100 28sec 6 · 102 0.06 0.07 0.09
2 2min 21sec 7 · 105 6 · 10−5 50 18sec 6 · 103 0.02 0.08 0.16 1sec 0.05

100 1min 41sec 4 · 104 0.01 0.05 0.12

-> SHAVE DEMO
34
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Solving the PDE by discretization

35

fluidize

discretize
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Solving the PDE by discretization

35

fluidize

discretize

How much 
probability flow 
during [t,t+dt]?
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Aggregation vs. Flow Approximation
assume that cells are 
(macro) states of a new 
(reduced) Markov chain

assume exponential 
distribution for jumps 
between macro states

true distribution is phase 
type => in general variance 
increases if number of 
phases is reduced to one

=> works only well in 
certain cases

36

safe way:

approximate probability 
flow between cells and 
numerically integrate PDE

see e.g. "Fokker–Planck 
approximation of the 
master equation in 
molecular biology" by 
Sjöberg, Lötstedt, Elf
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Steady-state solutions and 
stability analysis
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Does this help for locating equilibrium 
probabilities of the Markov chain?

Example: Exclusive Switch 

binding 
of X1 

promotor 
free

promotor-
X2 complex

promotor-
X1 complex

unbinding 
of X1 

binding 
of X2 

unbinding 
of X2 

Equilibrium points of mode ODEs:

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

2A → B

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

=const

c1 · 10 · 10 · dt
xA
1 = k1+u1

d1
xA
2 = 0

xB
1 = k1

d1+b1
xB
2 = k2

d2+b2

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

2A → B

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

=const

c1 · 10 · 10 · dt
xA
1 = k1+u1

d1
xA
2 = 0

xB
1 = k1

d1+b1
xB
2 = k2

d2+b2

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)

Rj :
�n

i=1 aijSi
cj−→

�n
i=1 bijSi

2A → B

X + Y
c2−→ 2Y

Y
c3−→ ∅

vj = (b1j − a1j, . . . , bnj − anj)

P (reaction Rj within [t, t+ dt) | X(t) = x)

= P (X(t+ dt) = x+ vj | X(t) = x)

= cj ·
�n

i=1

�
xi

aij

�
· dt =: αj(x)

x� = x+ vj

=const

c1 · 10 · 10 · dt
xC
1 = 0

xC
2 = k2+u2

d2

xA
1 = k1+u1

d1
xA
2 = 0

xB
1 = k1

d1+b1
xB
2 = k2

d2+b2

p(t+dt)(x) = p(t)(x)

+
�

j αj(x− vj) · dt · p(t)(x− vj)

−
�

j αj(x) · dt · p(t)(x)
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equilibrium of mode A and C at (100,0) and (0,100) 

equilibrium 
point

of mode B:
(5,5)

High Binding Rate

steady-state 
probability mass
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equilibrium of mode A and C at (120,0) and (0,120) 

equilibrium point
of mode B:

(33,33)

Low Binding Rate

40
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equilibrium of mode A and C at (120,0) and (0,120) 

equilibrium point
of mode B:

(33,33)

Low Binding Rate

Jumps between modes 
are not adequately taken 

into account!
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equilibrium of mode A and C at (120,0) and (0,100) 

equilibrium 
of mode B:

(5,0.5)

Asymmetric Binding Rate

Jumps between 
modes are not 

adequately taken into 
account!
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Stability Analysis
In order to decide whether a system is 
multistable and where the attractors are 
located:

in general equilibrium points of modes are 
not enough information

one has to compute/approximate the 
steady-state probability density 

42
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∂
∂tp(x, t) +

∂
∂xp(x, t)R(x) = p(t, x)Q(x)

43

Steady-state probability density

Problem: no initial conditions are known
=> find values of x where density is zero!
=> solve PDE w.r.t. these side conditions 
(derivation of side condtions is still and open 
problem)
=> alternatively, run the system transiently until 
convergence of distribution

Montag, 5. September 2011



Conclusions
• for many systems, a hybrid approach is the right 

way to go (switch variables!)

• fluidization of large populations gives huge 
computational benefits (both for Monte-Carlo and 
numerical simulations)

• Efficient approaches for stability analysis are still 
missing

• Efficient approaches for parameter estimation are 
still missing
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