Stochastic Hybrid Analysis of Markov Population Models

Verena Wolf, Saarland University

SAARLAND UNIVERSITY

Markov Chains with Population Structure

Queueing networks => many performance models of communication \& computer networks

Models of chemical reaction networks

... (every Markov model with "counter variables", small jump distances, "densitydependent" transition rates)

Deterministic Approximation

popular tool: make state space continuous and approximate discrete jumps by continuous flow
=> mean-field approximation
=> fluid analysis
=> reaction rate equations
=> 1st order moment closure
Approximation of the (co-)variances
=> 2nd order moment closure

Deterministic Approximation

popular tool: make state space continuous and approximate discrete jumps by continuous flow
=> mean-field approximation
=> fluid analysis
=> reaction rate equations
=> 1st order moment closure
Approximation of the (co-)variances
=> 2nd order moment closure

but: what if discreteness matters???

Example: Exclusive Switch

State variables: promotor: free $\mid X_{1}$ bound $\mid X_{2}$ bound populations of X_{1} and X_{2}

Example: Exclusive Switch

1 copy of each gene

Example: Exclusive Switch

1 copy of each gene
probability
distribution
at time 50

Example: Exclusive Switch

10 copies of each gene

Example: Exclusive Switch

10 copies of each gene

Stochastic hybrid approach

- keep small populations discrete stochastic
- make large populations continuous (with stochastic or deterministic dynamics)

Example: Exclusive Switch

discrete state (MODE) changes of the promotor

Example: Exclusive Switch

discrete state (MODE) changes of the promotor

Example: Exclusive Switch

discrete state (MODE) changes of the promotor

Example: Exclusive Switch

Example: Exclusive Switch

Example: Exclusive Switch

Example: Exclusive Switch

one may add ODEs for the (co-)variances ...

Outlook

- From multistep to hybrid simulation
- Transient numerical solution
- Steady-state solutions and stability analysis

From Multistep to Hybrid Simulation

Multistep Simulation

Several techniques for multistep simulation have been developed in the area of chemical kinetics

- T-leaping (Gillespie 2001, ...)
- Approximate Simulation (Haseltine and Rawlings 2002)
- Hybrid Stochastic Simulation (Salis and Kaznessis 2005)

Multistep Simulation

Several techniques for multistep simulation have been developed in the area of chemical kinetics

- T-leaping (Gillespie 2001, ...)
- Approximate Simulation (Haseltine and Rawlings 2002)
- Hybrid Stochastic Simulation (Salis and Kaznessis 2005)

For Monte-Carlo simulation discreteness is not a problem, but stiffness is!

Multiscale Problem

For direct numerical simulations (= approximations of the probability distributions):
=> one may use a stochastic hybrid approach because
(1) populations are large, keeping variables discrete is expensive (state space explosion) (2) model is stiff and simulation is very slow (step-size of numerical integration is too small)
often we have both!

Stiffness in Enzyme Kinetics

\#C

fast
slow
$E+S \xrightarrow{c_{1}} C$
$C \xrightarrow{c_{2}} E+S$
$C \xrightarrow{c_{3}} E+P$
many complex
formations/dissociations must occur until a product is formed \rightarrow \#

Multistep simulation

Init $\dagger:=\dagger_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{m}}$ for $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{m}}$; 4. Set $\dagger:=\dagger+T$ and update x as $x=x+\sum v_{i} k_{i}$.

Multistep simulation

time var
system state
Init $t:=\dagger_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates k_{1}, \ldots, k_{m} for K_{1}, \ldots, K_{m};
4. Set $\dagger:=\dagger+T$ and update x as $x=x+\sum v_{i} k_{i}$.

Multistep

Init $t:=t_{0}, x:=x_{0}$ and $t_{\text {end }}$; transition rate of type i event (which changes the populations) e.g. chemical reaction, arrival of a while t < $t_{\text {end }}$ customer

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates k_{1}, \ldots, k_{m} for K_{1}, \ldots, K_{m}; 4. Set $t:=\dagger+T$ and update x as $x=x+\sum v_{i} k_{i}$.

Multistep simulation

Init $t:=\dagger_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates $\mathrm{k}_{1}, \ldots, \mathrm{~K}_{\mathrm{m}}$ for $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{m}}$; 4. Set $\dagger:=\dagger+T$ and update x as $x=x+\sum v_{i} k$.

Multistep simulation

Init $t:=\dagger_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{m}}$ for $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{m}}$; 4. Set $\dagger:=\dagger+T$ and update x as $x=x+\sum v_{i} k_{i}$.

$$
\begin{aligned}
& \text { realizations } \\
& \text { of } K_{1}, \ldots, K_{R}
\end{aligned}
$$

Multistep simulation

Init $t:=\dagger_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{m}}$ for $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{m}}$;
4. Set $\dagger:=\dagger+T$ and update x as $x=x+\sum v_{i} k_{i}$.
change vector of type i events

Multistep simulation

Init $t:=\dagger_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates k_{1}, \ldots, k_{R} for K_{1}, \ldots, K_{R};
4. Set $\dagger:=\dagger+T$ and update x as $x=x+\sum v_{i} k_{i}$.
direct multistepping: use Poisson distribution
(parameter $\alpha_{i}(x) T$) to estimate k_{1}, \ldots, k_{R} explicit T -leaping: choose time step such that rates do not change much (Gillespie 2001)

Hybrid simulation

Init $t:=t_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
3. Compute suitable estimates k_{1}, \ldots, k_{R} for K_{1}, \ldots, K_{R};
4. Set $t:=t+T$ and update x as $x=x+\sum v_{i} k_{i}$.

If the parameter $\alpha_{i}(x)$ T of the Poisson distribution is large $\left(\alpha_{i}(x) \tau \gg 1\right)$, then it tends to a normal distribution with mean $\alpha_{i}(x)$ t and variance $\alpha_{i}(x)$ (Gillespie 2002). If we forget about the variance, we just use $\alpha_{i}(x)$ T => deterministic approximation

Hybrid simulation

Init $t:=t_{0}, x:=x_{0}$ and $t_{\text {end }}$;
while t < $t_{\text {end }}$

1. Compute all $\alpha_{i}(x)$ and $\alpha(x):=\alpha_{1}(x)+\cdots+\alpha_{m}(x)$;
2. Choose a step size T according to some appropriate rule;
usually the case if reactant populations are large as $x=x+\sum v_{i} k_{i}$.
If the parameter $\alpha_{i}(x)$ t of the Poisson distribution is large $\left(\alpha_{i}(x) \tau \gg 1\right)$, then it tends to a normal distribution with mean $\alpha_{i}(X)$ T and variance $\alpha_{i}(x)$ (Gillespie 2002).
If we forget about the variance, we just use $\alpha_{i}(x)$ т => deterministic approximation

Stochastic Hybrid Simulation

How long do we stay in a mode until we change the mode?

mode A

$d / d+x_{1}=k_{1}-d_{1} x_{1}+u_{1}$ $d / d+x_{2}=-d_{2} x_{2}$
for mode A:
exit rate $\lambda=u_{1}$ is independent of evolution of x_{1} and x_{2}
=> exponential distributed delay with parameter $-\mathrm{u}_{1}$

Stochastic Hybrid Simulation

 How long do we stay in a mode until we change the mode?

$d / d+x_{1}=k_{1}-d_{1} x_{1}+b_{1} x_{1}$ $d / d+x_{2}=k_{2}-d_{2} x_{2}+b_{2} x_{2}$

for mode B : exit rate $\lambda(s)=b_{1} x_{1}(s)+b_{2} x_{2}(s)$
\Rightarrow delay T such that

$$
P\left(\tau>t^{\prime}\right)=\exp \left(-\int_{t}^{t+t^{\prime}} \lambda(s) d s\right)
$$

Stochastic Hybrid Simulation

 How long do we stay in a mode until we change the mode?$\lambda(s)=b_{1} x_{1}(s)+b_{2} x_{2}(s)$
but the evolution of $x_{1}(s)$ and $x_{2}(s)$ during $[t, t+T]$ is apriori not known => exploit that for $F\left(t^{\prime}\right)=P\left(T>t^{\prime}\right)$

$$
\frac{d}{d s} F(s)=\lambda(s) F(s)
$$

and $F(0)=1$

Stochastic Hybrid Simulation

 How long do we stay in a mode until we change the mode?$\lambda(s)=b_{1} x_{1}(s)+b_{2} x_{2}(s)$
but the evolution of $x_{1}(s)$ and $x_{2}(s)$ during $[t, t+T]$ is apriori not known => exploit that for $F\left(t^{\prime}\right)=P\left(T>t^{\prime}\right)$

$$
\frac{d}{d s} F(s)=\lambda(s) F(s)
$$

and $F(0)=1$

Hybrid simulation

Init $t:=t_{0}, x:=x_{0}, m:=m_{0}$, and $t_{\text {end }}$;
while \dagger < $t_{\text {end }}$

1. Pick uniformly distributed random number U;
2. Integrate x using ODEs of current mode;
simultaneously integrate $F(s)$ with initial condition $F(0)=1$;
3. Stopp integration at time T where $F(T)=U$;
4. Decide for next mode accoring to jump rates of current mode m;
5. Set $\dagger:=\dagger+\mathrm{T}$ (and update \times according to mode switch)
\uparrow
only of discrete jump rates are not part of ODEs

Transient numerical solution

Transient numerical solution

Why do we care about numerical solutions if Monte-Carlo simulation works well?

- compute the whole probability distribution
- compute probabilities of rare events
- calibrate parameters w.r.t. observations
\Rightarrow force simulation method to explore certain interesting parts of the state space (even if they are unlikely)!

PDE of the PDF

single continuous variable:
mode $\mathbf{i} \quad \begin{aligned} & p_{i}(t, x)=\frac{1}{\Delta} \lim _{\Delta \rightarrow 0} P(M(t)=i, x<X(t)<x+\Delta) \\ & \text { for proteinuous variable concentration }\end{aligned}$

$$
\frac{\partial}{\partial t} p(x, t)+\frac{\partial}{\partial x} p(x, t) R(x)=p(t, x) Q(x)
$$

see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

PDE of the PDF

single continuous variable:

$$
\begin{array}{rc}
\frac{\partial}{\partial t} p(x, t)+\frac{\partial}{\partial x} p(x, t) R(x) & =p(t, x) Q(x) \\
\text { ODE rates of } & \text { jump rates for } \\
\text { protein dynamics } & \text { switching modes }
\end{array}
$$

see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998

PDE of the PDF

single continuous variable:

$$
\begin{array}{rc}
\frac{\partial}{\partial t} p(x, t)+\frac{\partial}{\partial x} p(x, t) R(x) & =p(t, x) Q(x) \\
\text { ODE rates of } & \text { jump rates for } \\
\text { protein dynamics } & \text { switching modes }
\end{array}
$$

see "Fluid Stochastic Petri Nets" by Trivedi, Kulkarni, 1998
Numerical Solution \Rightarrow either discretize continuous part of state space and integrate PDE or ...

Numerical Solution Algorithm

(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)
In general, split population vector:

- large populations -> deterministic/continuous (DC) dynamics given by ODE (depend on mode) (also possible with more moments than just 1st)

Numerical Solution Algorithm

(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)
In general, split population vector:

- large populations -> deterministic/continuous (DC) dynamics given by ODE (depend on mode) (also possible with more moments than just 1st)
- small populations -> stochastic/discrete (SD) modes; dynamics given by (small) Markov chain

Numerical Solution Algorithm

(Mateescu, Mikeev, Henzinger, Wolf: CMSB 2010)
In general, split population vector:

- large populations \rightarrow deterministic/continuous (DC) dynamics given by ODE (depend on mode) (also possible with more moments than just 1st)
- small populations -> stochastic/discrete (SD) modes; dynamics given by (small) Markov chain
\Rightarrow may switch representations over time

How to integrate over time?

Given at time t: probabilities $p_{A}+p_{B}+p_{C}=1$ and conditional expectations $x_{i 8}{ }^{A}, x_{i}^{B}, x_{i}^{C} \quad(i=1,2)$

How to integrate over time?

1) integrate probability distribution for small $[t, t+h]$

$$
p_{A}(t) \rightarrow p_{A}(t+h) \quad p_{29}(t) \rightarrow p_{B}(t+h)
$$

How to integrate over time?

1) integrate probability distribution for small $[t, t+h]$

$$
p_{A}(t) \rightarrow p_{A}(t+h) \quad p_{29}(t) \rightarrow p_{B}(t+h)
$$

How to integrate over time?

2) integrate conditional expect. for small $[t, t+h]$ $x_{i}^{A}(t) \Longrightarrow x_{i}^{A}(t+h) \quad x_{30}^{B}(t) \Longrightarrow x_{i}^{B}(t+h)$

How to integrate over time?

3) "correct" condition in $x_{i}^{A}(t+h), x_{i}^{B}(t+h), x_{i}^{C}(t+h)$ by taking into account that state is left during $[t, t+h]$

How to integrate over time?

Result at $\dagger+h$: new probabilities $p_{A}(t+h), p_{B}(t+h), \ldots$ and new conditional expect. $x_{i}^{A}(t+h), x_{i}^{B}(t+h), \ldots$.

How to integrate over time?

1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes for h time units
3) correct values obtained in 2) as follows:
$\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}(\mathrm{t}+\mathrm{h}) \mid\right.$ in mode A at time $\left.\mathrm{t}+\mathrm{h}\right] \approx$
$\Sigma_{\text {mode } B}$ (inflow from $\left.B\right)^{*}($ value obtained in 2) for B) / (total inflow to A)
4) integrate mode probabilities populations here 2) integrate conditional expectations of all modes for h time units
5) correct values obtained in 2) as follows: $E\left[X_{i}(t+h) \mid\right.$ in mode A at time $\left.t+h\right] \approx$ $\Sigma_{\text {mode } B}$ (inflow from $\left.B\right)^{*}($ value obtained in 2) for B) / (total inflow to A)

How to integrate over time?

1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes for h time units value obtained under the assumption of remaining
3) correct values obtained in 2 in mode during $[t, t+h)$ $E\left[X_{i}(t+h) \mid\right.$ in mode A at time $\left.t+h\right] \approx$ $\Sigma_{\text {mode } B}$ (inflow from $\left.B\right)^{*}($ value obtained in 2) for B) / (total inflow to A)

How to integrate over time?

1) integrate mode probabilities for h time units
2) integrate conditional expectations of all modes for h time units
3) correct values obtained in 2) as follows:
$\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}(\mathrm{t}+\mathrm{h}) \mid\right.$ in mode A at time $\left.\mathrm{t}+\mathrm{h}\right] \approx$
$\Sigma_{\text {mode } B}$ (inflow from $\left.B\right)^{*}$ (value obtained in 2) for B) /
(total inflow to A)

Probability flow from
B to A during $[t, t+h)$

Experimental Results

Results for exclusive switch

iscrete hybrid											
pset	ex. time	$\|S i g\|$	error	pop. thres.	ex. time	$\|S i g\|$	m1	m2	m3	ex. time	m1
1	4h 51min	$2 \cdot 10^{5}$	$4 \cdot 10^{-5}$	50	25 sec	$4 \cdot 10^{2}$	0.06	0.08	0.09	1 sec	0.45
				100	28 sec	$6 \cdot 10^{2}$	0.06	0.07	0.09		
2	2 min 21 sec	$7 \cdot 10^{5}$	$6 \cdot 10^{-5}$	50	18 sec	$6 \cdot 10^{3}$	0.02	0.08	0.16	1 sec	0.05
				100	1 min 41 sec	$4 \cdot 10^{4}$	0.01	0.05	0.12		

Use moment-based representation for proteins X_{1} and X_{2} when population reaches 50 or 100 .
-> SHAVE DEMO

Solving the PDE by discretization

fluidize

discretize

Solving the PDE by discretization

discretize

Aggregation vs. Flow Approximation

assume that cells are (macro) states of a new (reduced) Markov chain assume exponential distribution for jumps between macro states
true distribution is phase type => in general variance increases if number of phases is reduced to one => works only well in certain cases
safe way: approximate probability flow between cells and numerically integrate PDE
see e.g. "Fokker-Planck approximation of the master equation in molecular biology" by Sjöberg, Lötstedt, Elf

Steady-state solutions and stability analysis

Example: Exclusive Switch

Equilibrium points of mode ODEs:

$$
\begin{aligned}
& x_{1}^{A}=\frac{k_{1}+u_{1}}{d_{1}} \\
& x_{2}^{A}=0
\end{aligned}
$$

$$
\begin{array}{|l}
x_{1}^{B}=\frac{k_{1}}{d_{1}+b_{1}} \\
x_{2}^{B}=\frac{k_{2}}{d_{2}+b_{2}} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& x_{1}^{C}=0 \\
& x_{2}^{C}=\frac{k_{2}+u_{2}}{d_{2}}
\end{aligned}
$$

Does this help for locating equilibrium probabilities of the Markov chain?

High Binding Rate

 equilibrium of mode A and C at $(100,0)$ and $(0,100)$

equilibrium point of mode B : $(5,5)$

Low Binding Rate

equilibrium of mode A and C at $(120,0)$ and $(0,120)$

equilibrium point of mode B:
$(33,33)$

Low Binding Rate

equilibrium of mode A and C at $(120,0)$ and $(0,120)$

equilibrium point of mode B:
$(33,33)$
Jumps between modes are not adequately taken into account!

Asymmetric Binding Rate

equilibrium of mode A and C at $(120,0)$ and $(0,100)$

equilibrium of mode B: $(5,0.5)$

Jumps between modes are not adequately taken into account!

Stability Analysis

In order to decide whether a system is multistable and where the attractors are located:
in general equilibrium points of modes are not enough information
one has to compute/approximate the steady-state probability density

Steady-state probability density

$$
\frac{\partial}{\partial x}+\frac{\partial}{\partial x} p(x, t) R(x)=p(t, x) Q(x)
$$

Problem: no initial conditions are known
\Rightarrow find values of x where density is zero!
\Rightarrow solve PDE w.r.t. these side conditions
(derivation of side condtions is still and open problem)
=> alternatively, run the system transiently until convergence of distribution

Conclusions

- for many systems, a hybrid approach is the right way to go (switch variables!)
- fluidization of large populations gives huge computational benefits (both for Monte-Carlo and numerical simulations)
- Efficient approaches for stability analysis are still missing
- Efficient approaches for parameter estimation are still missing

