
Department of Computer Science /

Chair 5 of Programming Systems

1

Bernhard Steffen MLQA 2010 09-07-2010

From the How to the What

Static Analysis via Model Checking

Bernhard Steffen
TU Dortmund

Department of Computer Science /

Chair 5 of Programming Systems

2

Bernhard Steffen MLQA 2010 09-07-2010

The difference between model checking and

program analysis is this.:

When you call a model checker,

it runs and runs and never comes back;

when you do a program analysis,

it comes back immediately and says „don‘t know“.

Patrick Cousot

Model checking is the type checking of tomorrow

Department of Computer Science /

Chair 5 of Programming Systems

3

Bernhard Steffen MLQA 2010 09-07-2010

Static Analysis

Program/Data-Oriented

Algorithmic Specifications

Analysis Frameworks

Practice-Driven

Complex Program Structures

Complex Data Structures

Structural Heuristics

Analysis

Missed Transformations

Global Analysis

Model Checking

Property-Oriented

Temporal Specifications

(Generic) Model Checkers

Theory-Driven

‚simple‘ Computational Structures

Abstract Entities

Efficient Codings

Verification

Some Diagnostics

Local Analysis

Playing the Association Game

Department of Computer Science /

Chair 5 of Programming Systems

4

Bernhard Steffen MLQA 2010 09-07-2010

SA Generation

SA for some Property P: Program Program Points satisfying P

MC: Temporal Formula F * Model Nodes satisfying F

manual SOS Obvious

Generated analyses were more efficient than the handwritten counterparts!

• Better structure

• Optimized Model Checkers (Fixpoint Analysis Machine)

• Dwyer and Robby example

Department of Computer Science /

Chair 5 of Programming Systems

5

Bernhard Steffen MLQA 2010 09-07-2010

Outline

• Motivation

• Control Flow (Generating Models)

• Static Analysis as Model Checking

• Conclusions

Department of Computer Science /

Chair 5 of Programming Systems

6

Bernhard Steffen MLQA 2010 09-07-2010
6

Adding Lables

 x = a, . .[assSOS]

 S1; S2, . S1
´;S2, .

[comp1
SOS]

 S1, . S1
´, .

 S1; S2, . S2, .
[comp2

SOS]
 S1, . .

x = a

 skip, . .[skipSOS] skip

λ

λ

λ

λ

Department of Computer Science /

Chair 5 of Programming Systems

7

Bernhard Steffen MLQA 2010 09-07-2010
7

 if (b) {S1} else {S2}, . S1, .

[if ttSOS]

 if (b) {S1} else {S2}, . S2, .

[if ffSOS]

 while (b) {S}, . if (b) {S; while (b) {S}} else {skip}, .

[whileSOS]

b

!b

skip

Department of Computer Science /

Chair 5 of Programming Systems

8

Bernhard Steffen MLQA 2010 09-07-2010
8

while (!(x==1)) {y = y*x; x = x-1}

if ((!(x==1) {y = z*x; x = x-1; while (!(x==1)) {y = y*x; x = x-1}} else {skip}

y = z*x; x = x-1; while (!(x==1)) {y = y*x; x = x-1}} skip

x = x-1; while (!(x==1)) {y = y*x; x = x-1}}

y = 1; while (!(x==1)) {y = z*x; x = x-1}

y = 1

skip

!(!(x==1))!(x==1)

y = y*x

x = x-1

skip

Department of Computer Science /

Chair 5 of Programming Systems

9

Bernhard Steffen MLQA 2010 09-07-2010
9

Label Transition System y = 1

skip

!(!(x==1))!(x==1)

y = y*x

x = x-1

skip

Department of Computer Science /

Chair 5 of Programming Systems

10

Bernhard Steffen MLQA 2010 09-07-2010
10

y = 1

skip

!(!(x==1))!(x==1)

y = y*x

x = x-1

3-

31

31

31

-

33

skip

Department of Computer Science /

Chair 5 of Programming Systems

11

Bernhard Steffen MLQA 2010 09-07-2010
11

y = 1

skip

!(!(x==1))!(x==1)

y = y*x

x = x-1

3-

31

31

31

33

23

23

23

26

-

skip

Department of Computer Science /

Chair 5 of Programming Systems

12

Bernhard Steffen MLQA 2010 09-07-2010
12

y = 1

skip

!(!(x==1))!(x==1)

y = y*x

x = x-1

3-

31

31

31

33

23

23

23

26

-

16

16

16

skip

16

Department of Computer Science /

Chair 5 of Programming Systems

13

Bernhard Steffen MLQA 2010 09-07-2010
13

y = 1

!(x==1) !(!(x==1))

y = y*x

x = x-1

x = n

y = 1 x =n

y = 1 x = n x ≠1

y = x x = n x ≠ 1

y = 1 x =n

?

skip

skip

y = 1 x =1

y = 1 x =1

Department of Computer Science /

Chair 5 of Programming Systems

14

Bernhard Steffen MLQA 2010 09-07-2010
14

y = 1

!(x==1) !(!(x==1))

y = y*x

x = x-1

x = n

y = 1 x = n

y = 1 x = n x > 1

y = n * (n-1) x = n -1 x >1

y = 1 x =n

y = 1 x = 1

y = n x = n -1

y = n x = n -1 x >1

y = n x = n x > 1

y = n x = n -1

y = 2 x = 1

?
skip

skip
y = 1 x = 1

y = 2 x = 1

Department of Computer Science /

Chair 5 of Programming Systems

15

Bernhard Steffen MLQA 2010 09-07-2010
15

y = 1

!(x==1) !(!(x==1))

y = y*x

x = x-1

x = n

y = n x = n -1

y = 1 x = n x > 1

y = n * (n-1) x = n -1 x >1

y = 1 x =n

y = 1 x =1

y = 1 x =n

y = 2 x = 1

y = n x = n -1

y = n x = n -1 x >1

y = n x = n x ≠ 1

y = n * (n-1) x = n -2

y = 6 x = 1

y = n * (n-1) x = n -2

etc…..

skip

skipy = 1 x =1y = 2 x = 1
y = 6 x = 1

Department of Computer Science /

Chair 5 of Programming Systems

16

Bernhard Steffen MLQA 2010 09-07-2010

Outline

• Motivation

• Control Flow

• Static Analysis as Model Checking

• Conclusions

Department of Computer Science /

Chair 5 of Programming Systems

17

Bernhard Steffen MLQA 2010 09-07-2010

Pre S Post

SPre Post

Is modelled as

S
Pre Post

Easily obtained with SOS via

Department of Computer Science /

Chair 5 of Programming Systems

18

Bernhard Steffen MLQA 2010 09-07-2010

F::= AP not F F or F X F bX F F W F F bW F

The (Linear Time) Logic

A
satisfies F

satisfies X F satisfies F W A

F

In the Graph Model View

Department of Computer Science /

Chair 5 of Programming Systems

19

Bernhard Steffen MLQA 2010 09-07-2010

(not (End or <mod>tt)) W comp

Busy Code Motion

• Downsafe

• Earliest

The computations points

Downsafe and Earliest!

Comp

bX ((not DS) bW mod)

mod

not DS

not mod

Department of Computer Science /

Chair 5 of Programming Systems

20

Bernhard Steffen MLQA 2010 09-07-2010

Lazy Code Motion

1. Delayed

The computation points)

Delayed and (X(not Delayed) or comp)

Earliest

not comp

(not (start or comp) bW Earliest

Department of Computer Science /

Chair 5 of Programming Systems

21

Bernhard Steffen MLQA 2010 09-07-2010

Busy Code Motion is

Computationally Optimal

Lazy Code Motion is

Computationally and

Lifetime Optimal

Department of Computer Science /

Chair 5 of Programming Systems

22

Bernhard Steffen MLQA 2010 09-07-2010

Busy Code Motion: Morel Renvoise-Style

Local Predicates

Up-Safety

Department of Computer Science /

Chair 5 of Programming Systems

23

Bernhard Steffen MLQA 2010 09-07-2010

Down-Safety

Insertion Points („Earliestness“)

Department of Computer Science /

Chair 5 of Programming Systems

24

Bernhard Steffen MLQA 2010 09-07-2010

Morel Renvoise Classical Formulation

Local Predicates

Availability

Department of Computer Science /

Chair 5 of Programming Systems

25

Bernhard Steffen MLQA 2010 09-07-2010

Partial Availability

Anticipability

Department of Computer Science /

Chair 5 of Programming Systems

26

Bernhard Steffen MLQA 2010 09-07-2010

Placement Possible

Truly Bi-Directional

Department of Computer Science /

Chair 5 of Programming Systems

27

Bernhard Steffen MLQA 2010 09-07-2010

Initialization

● Replacement:

Department of Computer Science /

Chair 5 of Programming Systems

28

Bernhard Steffen MLQA 2010 09-07-2010

Conceptual Difference

Besides the improved Model Structure:

- Two hierachical

- greatest,

- uni-directional fixpoint computations

- Four hierachical

- greatest and least,

- bi-directional fixpoint computations

Impact e.g.:

- Correctness and Optimality Proof

- Refinement (Lazy Code Motion)

Department of Computer Science /

Chair 5 of Programming Systems

29

Bernhard Steffen MLQA 2010 09-07-2010

Outline

• Motivation

• Control Flow

• Static Analysis as Model Checking

• Conclusions

Department of Computer Science /

Chair 5 of Programming Systems

30

Bernhard Steffen MLQA 2010 09-07-2010

Conclusions

• The SA-Generator

• Models and Logics

• Modular Proofs

• Property-Oriented Expansion

Department of Computer Science /

Chair 5 of Programming Systems

31

Bernhard Steffen MLQA 2010 09-07-2010

SA Generation

SA for some Property P: Program Program Points satisfying P

MC: Temporal Formula F * Model Nodes satisfying F

manual SOS Obvious

Generated analyses were more efficient than the handwritten counterparts!

• Better structure

• Optimized Model Checkers (Fixpoint Analysis Machine)

• Dwyer and Robby example

Department of Computer Science /

Chair 5 of Programming Systems

32

Bernhard Steffen MLQA 2010 09-07-2010

(bi-partite) Kripke Structure satisfies F W notA

Models and Logics

Kripke Transitions System satisfies AG F

Flow Graph satisfies Property

A

Critical Edges

becomesPre S Post SPre Post

becomesPre
S

Post Pre PostS

Department of Computer Science /

Chair 5 of Programming Systems

33

Bernhard Steffen MLQA 2010 09-07-2010

A step in the optimality proof

(for bi-partite Kripke Structures)

Safe = DS and US,

Earliest implies (comp or not DS)

delivers

Safe and Earliest = DS and Earliest

Modular Proofs at the What-Level

Department of Computer Science /

Chair 5 of Programming Systems

34

Bernhard Steffen MLQA 2010 09-07-2010

Classical Essence – oriented

Syntactic
parse tree

Computation oriented
attribute evaluation

Fixed Structure
invariant flow of control

Specialized
flow graphs

Semantic
abstractly interpreted transition

systems

Property- oriented
modal formulas

Evolving Structures
property – oriented expansion

Specialized Structures
no critical edges placement models

equational systems

Property-Oriented Expansion

Department of Computer Science /

Chair 5 of Programming Systems

35

Bernhard Steffen MLQA 2010 09-07-2010

HOW WHAT

Static Analysis Model Checking

„Design for“ Paradigms

Towards domain-specific simple solutions

Conclusion

