
1

Partial Models and Software
Model Checking

MLQA
July 9, 2010

Marsha Chechik
University of Toronto

Arie Gurfinkel
SEI/CMU

2

� NO WARRANTY

� THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

� Use of any trademarks in this presentation is not intended in any way to
infringe on the rights of the trademark holder.

� This Presentation may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

� This work was created in the performance of Federal Government Contract
Number FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has
a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others
to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

3

Abstract Model Checking using Partial Models

Modal TS 3-Val KS

Mixed TS
Belnap KS

Generalized KMTS

Partial Models

Partial
Model Checker

Property

M

ϕϕϕϕ

true

M ⊨⊨⊨⊨ φ

false

M ⊨⊨⊨⊨ ¬φ

unknown

M ⊭⊭⊭⊭ φ and M ⊭⊭⊭⊭ ¬φ

Answers

Kripke Modal TS

[LT88,DGG97,BG99,HJS01,

SG04,ADJ04……]

[TOSEM03]

4

Abstract

Model Check
Counterexample

Valid?

Refine

CounterExample Guided Abstraction
Refinement (CEGAR)

Is Safe?
(Is ERROR

unreachable)

Yes Yes

No

Program

Predicates

No + Abstract

Counterexample

Over-
Approximate

Abstract

Program

Boolean

Model

[CGJLV00,BR01]

5

YASM: CEGAR + Belnap KSs

Abstract

Model
Checker

Abstract

Program

Temporal

Property

True False

Program

Predicates

Unknown

Partial

Model

Yet Another Software Model Checker

Exact
Semantics

Proof
Generation

Refine

Partial

Proof

[TACAS’06]

available at www.cs.toronto.edu/~arie/yasm

6

YASM: CEGAR + Belnap KSs

Abstract

Model
Checker

Abstract

Program

Temporal

Property

True False

Program

Predicates

Unknown

Partial

Model

Yet Another Software Model Checker

Exact
Semantics

Proof
Generation

Refine

Partial

Proof

[TACAS’06]

Partial
Model

Semantics

available at www.cs.toronto.edu/~arie/yasm

2

7

Why use partial models in CEGAR?

�Prove and disprove properties

�Check complex properties
�reachability, non-termination, existential (exists-a-
path), universal (forall-paths), branching (CTL)

�Use all information available from abstraction
�traditional predicate abstraction already includes
over- and under-approximation

�Exploit new techniques and heuristics for
efficient model-checking and refinement
�refinement with 3-valued counterexamples

�aggressive abstraction

�error region refinement

�and many more…

8

�Partial Models for Program Abstraction
�Overview of existing modeling formalisms

�Program Abstraction “Problem”

�Expressiveness of Partial Models

�Model Checking w/ Reduced Inductive Semantics

�Yasm: A Brief Overview
�Models and Model Checking algorithm

�Program Abstraction

�Abstraction Refinement

�Exploiting Partial Model Semantics

�Checking Non-Termination of Recursive Programs

�Conclusions and Lessons Learned

Outline

9

Partial Models

� Transition system: states
and transitions

� Two types of transitions
�may: possible (over-
approximating) behaviors

�must: necessary (under-
approximating) behaviors

Partial Model M

a2

a3

a1

may

must

10

Refinement of Partial Models

B ���� ϕϕϕϕ

M ���� ϕϕϕϕ

B

M

Concrete

Partial

ρρρρ

B refines M (or M approximates B) iff there exists a relation ρ s.t.
•B ρ-simulates necessary behaviors of M
•Possible behaviors of M ρ-simulate B

Mixed Simulation [DGG97]

11

� Kripke Modal Transition Systems [HJS01]
�must transitions ⊆⊆⊆⊆ may transitions

�a.k.a: 3-valued Kripke Structures [CDEG03],
Modal TSs[LT88], Partial Kripke
Structures[BG99]

� Mixed Transition Systems [DGG97]
�independent must and may transitions

�a.k.a.: 4-valued (Belnap) Kripke
Structures[CDEG03]

� Generalized Kripke Modal Transition
Systems [SG04]
�with must hyper-transitions

�a.k.a: Abstract TSs[AGJ04], Disjunctive Modal
TSs[Larsen91]

Existing Partial Modeling Formalisms

KMTSs

⊆⊆ ⊆⊆

MixTSs

⊆⊆ ⊆⊆

GKMTSs

12

� Kripke Modal Transition Systems [HJS01]
�must transitions ⊆⊆⊆⊆ may transitions

�a.k.a: 3-valued Kripke Structures [CDEG03],
Modal TSs[LT88], Partial Kripke
Structures[BG99]

� Mixed Transition Systems [DGG97]
�independent must and may transitions

�a.k.a.: 4-valued (Belnap) Kripke
Structures[CDEG03]

� Generalized Kripke Modal Transition
Systems [SG04]
�with must hyper-transitions

�a.k.a: Abstract TSs[AGJ04], Disjunctive Modal
TSs[Larsen91]

Existing Partial Modeling Formalisms

KMTSs

⊆⊆ ⊆⊆

MixTSs

⊆⊆ ⊆⊆

GKMTSs

a2

a3

a1 a4

GKMTS

Must
Hyper-Trans

3

13

Partial Models and Abstraction

B ���� ϕϕϕϕ

M ���� ϕϕϕϕ

B

M

Concrete

Partial

ρρρρ

Given a concrete system B, an abstract domain A, and a soundness
relation ρ, construct a partial model M that ρ-approximates B and
is as precise as possible

Abstraction Problem:

Abstract
Domain A

Fixed Soundness
Relation

new state

14

Example: Predicate Abstraction

x<0,y<0 x<0,y≥0 x≥0,y<0x≥0,y≥0

x<0 y<0 x≥0y≥0

true

false

Cartesian Predicate Abstract Domain
of two predicates: x<0 and y<0

y<0

x≥0
y<0

x<0
y<0

x≥0
y≥0

Abstract Model M

Abstract domain adds expressiveness
at a cost of possible redundancy

“hyper”
state

Boolean
states

Partial
states

induced
must trans
induced

must trans
induced

must trans
induced

must trans

induced
may trans
induced
may trans

15

Expressiveness of Partial Models

MixTSsKMTSs GKMTSs⊆⊆⊆⊆⊆⊆⊆⊆

Syntactically

MixTSsKMTSs GKMTSs≡≡≡≡≡≡≡≡

Semantically (for abstraction)

Theorem [VMCAI 2009]
• GKMTSs and MixTSs are expressively equivalent
with the same bound on size

•MixTSs are more succinct than KMTSs

16

From GKMTS to MixTS

x≤≤≤≤0

x%2=0

x>0

x%2=1

x>0

x%2=0

x≤≤≤≤0

odd(x)

a2

a3

a1 a4

GKMTS

Must
Hyper-Trans

x≤≤≤≤0

x%2=0

x>0

x%2=1

x>0

x%2=0

x≤≤≤≤0

odd(x)

a2

a3

a1 a4

MixTS

x>0

a5

γγγγ(a5) = γγγγ(a2) ∪∪∪∪ γγγγ(a3)

≡≡≡≡

17

�Partial Models for Program Abstraction
�Overview of existing modeling formalisms

�Program Abstraction “Problem”

�Expressiveness of Partial Models

�Model Checking w/ Reduced Inductive Semantics

�Yasm: A Brief Overview
�Models and Model Checking algorithm

�Program Abstraction

�Abstraction Refinement

�Exploiting Exact Semantics

�Checking Non-Termination of Recursive Programs

�Conclusions and Lessons Learned

Outline

18

Model Checking of Partial Models

�Fact:
Partial Modeling formalisms are not equivalent w.r.t
Model Checking semantics!

�Inductive semantics of temporal logic (SIS)
�defined inductively on the syntax of the logic,
e.g., ||ϕϕϕϕ ÆÆÆÆ ψψψψ|| ≜≜≜≜ ||ϕϕϕϕ|| ÆÆÆÆ ||ψψψψ||, ||EXϕϕϕϕ|| ≜≜≜≜ pre(||ϕϕϕϕ||)

�tractable, efficient, symbolic algorithm

�Fact:
GKMTSs are strictly more precise than MixTSs w.r.t
the Standard Inductive Semantics!

�But…
… hyper-transitions are hard to encode symbolically

4

19

SIS: MixTS is less precise than GKMTS

For model-checking under standard inductive semantics
of TL, MixTS are less precise than GKMTS

p¬q

¬p

q¬p¬q

p¬q

a2

a3

a1 a4

GKMTS

p¬q

¬p

q¬p¬q

p¬q

a2

a3

a1 a4

MixTS¬p

q∨ ¬q: true

q∨ ¬q: true

q∨ ¬q: true

EX q∨¬q: true

q∨¬q: true

q∨¬q: true

q∨¬q: unknown

EX q∨¬q:

unknown

Property: EX q∨¬q
20

Reduced Inductive Semantics

x<0,y<0 x<0,y≥0 x≥0,y<0x≥0,y≥0

x<0 y<0 x≥0y≥0

true

false

Theorem [VMCAI’09]
�RIS more precise than SIS

�GKMTS=MixTS under RIS

for each sub-formula ψψψψ
1. evaluate ψ ψ ψ ψ on boolean states only

2. extend to partial states
end for

Boolean
states

Partial
states

21

RIS for Predicate Abstraction

TS +
Over-Aprx

MixTS +
SIS

MixTS +
RIS

GKMTS +
SIS/RIS

Sets repr.
(BDD vars)

N 2N + 1 N + 1 ?

Trans repr.
(BDD vars)

N + N 2N + 2N + 1 N + 2N + 1 ?

Extra Ops none none REDUCE ?

Precision - + ++ ++

Efficiency ++ + ++ ?

MixTS + RIS is a precise Partial Model w/ effective
symbolic Model Checking procedure

22

RIS for Predicate Abstraction

TS +
Over-Aprx

MixTS +
SIS

MixTS +
RIS

GKMTS +
SIS/RIS

Sets repr.
(BDD vars)

N 2N + 1 N + 1 ?

Trans repr.
(BDD vars)

N + N 2N + 2N + 1 N + 2N + 1 ?

Extra Ops none none REDUCE ?

Precision - + ++ ++

Efficiency ++ + ++ ?

of
predicates

to model true,
false, unknown

MixTS + RIS is a precise Partial Model w/ effective
symbolic Model Checking procedure

23

Results

� RIS is compact than SIS

� RIS is more precise than SIS

� RIS has the same complexity as SIS

24

Results

� RIS is compact than SIS

� RIS is more precise than SIS

� RIS has the same complexity as SIS

RIS more
compact
RIS more
compact

5

25

Results

� RIS is compact than SIS

� RIS is more precise than SIS

� RIS has the same complexity as SIS

RIS more
precise

RIS more
precise

RIS more
precise

RIS more
precise

26

Results

� RIS is compact than SIS

� RIS is more precise than SIS

� RIS has the same complexity as SIS

Reduce ~ 25%
of runtime

Reduce ~ 25%
of runtime

27

Results

� RIS is compact than SIS

� RIS is more precise than SIS

� RIS has the same complexity as SIS

Same
Complexity

Same
Complexity

Same
Complexity

Same
Complexity

28

In Summary

�Using partial models
�Use for abstraction is different than use for
specification!

�Expressive power
�The three main formalisms are expressively equivalent
(when used for abstraction)

�Reasoning
�Several model-checking semantics possible.

�The choice dramatically affects precision!

�Verdict:
�overall, MixTS + RIS makes a good
precision/efficiency trade-off

29

�Partial Models for Program Abstraction
�Overview of existing modeling formalisms

�Program Abstraction “Problem”

�Expressiveness of Partial Models

�Model Checking w/ Reduced Inductive Semantics

�Yasm: A Brief Overview
�Models and Model Checking algorithm

�Program Abstraction

�Abstraction Refinement

�Exploiting Partial Model Semantics

�Checking Non-Termination of Recursive Programs

�Conclusions and Lessons Learned

Outline

30

Yasm: Models and Model Checking

� Belnap Logic
� 4-valued logic: true, false,
unknown, inconsistent

� Belnap Kripke Structures
� Kripke structures extended to Belnap Logic
� Propositions

� True, False, or Unknown

� Transitions
� necessary: ⊤⊤⊤⊤, possible: ⊥⊥⊥⊥

� necessary and possible: t, impossible: f

�Analysis via Multi-Valued
Model Checking

p = t

q = f

p = f

q = f

p = t
q = ⊥p = t

q = t

t

f

⊥⊥⊥⊥ ⊤

Belnap
logic

M. Chechik, B. Devereux, S. Easterbrook, A. Gurfinkel: Multi-valued symbolic model-

checking. ACM Trans. Softw. Eng. Methodol. 12(4)

Belnap
Kripke

6

31

Yasm: Program Abstraction

b1 = b1 ? t : *,

b2 = b2

b1 = t

b2 = t

b1 = f

b2 = t

b1 = t

b2 = t

b1 = f

b2 = t

b1 = *

b2 = t

b1 = t

b2 = t

b1 = f

b2 = t

b1 = ⊥⊥⊥⊥
b2 = t

t

f

⊥⊥⊥⊥ ⊤
Abstract (BP)

Over-Approx Exact Under-Approx

y = y - 1;

Concrete (C)
b1 is (y <= 2)

b2 is (x = 2)

A. Gurfinkel, M. Chechik: Why Waste a Perfectly Good Abstraction? TACAS 2006

c2bp
[SLAM]

32

can stop here

cause

Yasm: Abstraction Refinement

EF (ERROR) (s0) = ⊥∃n EFn (ERROR)(s0) = ⊥EF4 (ERROR)(s0) = ⊥s0→→→→s1 EF3(ERROR)(s1) = ⊥s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

XChekIs ERROR Reachable?

EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥⊥⊥⊥ ⊤

A. Gurfinkel, M. Chechik: Generating Counterexamples for Multi-valued Model-Checking. FME 2003

A. Gurfinkel, M. Chechik: Proof-Like Counter-Examples. TACAS 2003

33

� Aggressive Abstractions
�Enable coarse and computationally cheaper
abstraction

� Shallow Counterexamples
�Refinement guided to promising counterexample

� Reusing Previous Model-Checking Results
�EF ERROR ���� EF (ERROR “unavoidable” states)

Exploiting Exact Approximation Semantics

A. Gurfinkel, O. Wei, M. Chechik: Yasm: A Software Model-Checker for Verification and Refutation. CAV 2006

A. Gurfinkel, M. Chechik: Why Waste a Perfectly Good Abstraction? TACAS 2006

34

Non-Termination of Recursive Programs

Abstract

Model Check

Abstract

Program

Reachability,
Non-
termination

True False

Program

Predicates

Unknown

Partial

Model

Exact
Semantics

Proof
Generation

Refine

Partial

Proof

with stack-free
semantics

abstract
fixpoint
computation

extended for
function summary

A. Gurfinkel, O. Wei, M. Chechik: Model Checking Recursive Programs with Exact Predicate Abstraction.

ATVA 2008

35

Experiments: Non-termination

void quicksort(

int left,int right){

1: int lo,hi;

2: if(left>=right)

3 return;

4: lo=left; hi=right;

5: while(lo<=hi){

6: if(nondet(){

7: lo++;

8: } else {

9: if(lo!=left||hi!=right)

10: hi--;

11: }

12: }

13: quicksort(left,hi);

14: quicksort(lo,right);

15:}

Buggy Quicksort

• example from Moped [ES01] and Vera
[ACEM05]

� can prove non-termination over
finite data domain

� assume over-approximation for
infinite domain

YASM automatically proves non-
termination on infinite data domain !

� predicates

hi=right,lo=left, lo<=hi,left>=right

� non-terminating path
pc=2, left=1, right=2

pc=4, lo=left=1, hi=right=2

……

pc=2, left=1, right=2

36

�Partial Models for Program Abstraction
�Overview of existing modeling formalisms

�Program Abstraction “Problem”

�Expressiveness of Partial Models

�Model Checking w/ Reduced Inductive Semantics

�Yasm: A Brief Overview
�Models and Model Checking algorithm

�Program Abstraction

�Abstraction Refinement

�Exploiting Partial Model Semantics

�Checking Non-Termination of Recursive Programs

�Conclusions and Lessons Learned

Outline

7

37

Lessons Learned

�Partial models can be used effectively in
Software Model Checking. Good fit for
CEGAR.

�Using partial models in abstraction is very
different from using them for modeling and
specification

�4-valued (and 3-valued) analysis is much
easier to explain than the multi-valued
foundations behind it!

�Both Abstract Interpretation and Model
Checking gave us invaluable insights.

�It pays off to look at the problem with “both eyes”

38

Status and Future Work

�Yasm – state-of-the-art SMC (5 years ago)
�still great for trying new ideas and heuristics, BUT

�tied to an old theorem proover (CVCLite)

�fairly naive front-end and predicate abstraction algorithm

�WP-based abstraction-refinement (v.s. interpolant-based)

� no recursion and reduced semantics in stable release

�will be happy to help port/use/understand

�available at http://www.cs.toronto.edu/~yasm

�Dynamic analysis with partial models
�partial model to capture dynamically explored states

�under-approximation from dynamic execution

�over-approximation from abstraction of source code

�see our paper w/ A. Albarghouthi and O. Wei in CAV 2010

39

Acknowledgements

YASM is a joint work with
�Ou Wei

�Tom Hart (PtYasm)

�Kelvin Ku

�Shiva Nejati

�Laurie Lugin

�Xin (John) Ma

XChek is a joint work with
�Steve Easterbrook

�Benet Devereux

�Mihaela Gheorghiu

�Shiva Nejati

�Albert Lai

�Victor Petrovykh

�Christopher Thompson-
Walsh

�Anya Tefliovich

40

References
1. Ou Wei, Arie Gurfinkel, Marsha Chechik: Mixed Transition Systems

Revisited. VMCAI 2009

2. Arie Gurfinkel, Ou Wei, Marsha Chechik: Model Checking Recursive
Programs with Exact Predicate Abstraction. ATVA 2008

3. Arie Gurfinkel, Ou Wei, Marsha Chechik: Yasm: A Software Model-
Checker for Verification and Refutation. CAV 2006

4. Arie Gurfinkel, Marsha Chechik: Why Waste a Perfectly Good
Abstraction? TACAS 2006

5. Arie Gurfinkel, Ou Wei, Marsha Chechik: Systematic Construction of
Abstractions for Model-Checking. VMCAI 2006

6. Arie Gurfinkel, Marsha Chechik: Generating Counterexamples for
Multi-valued Model-Checking. FME 2003

7. Arie Gurfinkel, Marsha Chechik: Proof-Like Counter-Examples.
TACAS 2003

8. Marsha Chechik, Benet Devereux, Steve M. Easterbrook, Arie
Gurfinkel: Multi-valued symbolic model-checking. ACM Trans. Softw.
Eng. Methodol. 12(4)

Questions?

Comments?

Concerns?

Suggestions?

THANKS FOR YOUR

ATTENTION!

