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� Use of any trademarks in this presentation is not intended in any way to 
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� This Presentation may be reproduced in its entirety, without modification, 
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formal permission. Permission is required for any other use. Requests for 
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research and development center. The Government of the United States has 
a royalty-free government-purpose license to use, duplicate, or disclose the 
work, in whole or in part and in any manner, and to have or permit others 
to do so, for government purposes pursuant to the copyright license under 
the clause at 252.227-7013.
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YASM: CEGAR + Belnap KSs
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available at www.cs.toronto.edu/~arie/yasm
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Why use partial models in CEGAR?

�Prove and disprove properties

�Check complex properties
�reachability, non-termination, existential (exists-a-
path), universal (forall-paths), branching (CTL)

�Use all information available from abstraction
�traditional predicate abstraction already includes 
over- and under-approximation

�Exploit new techniques and heuristics for 
efficient model-checking and refinement
�refinement with 3-valued counterexamples

�aggressive abstraction

�error region refinement

�and many more…
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�Partial Models for Program Abstraction
�Overview of existing modeling formalisms

�Program Abstraction “Problem”

�Expressiveness of Partial Models

�Model Checking w/ Reduced Inductive Semantics
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�Program Abstraction

�Abstraction Refinement
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Partial Models

� Transition system: states 
and transitions

� Two types of transitions
�may: possible (over-
approximating) behaviors

�must: necessary (under-
approximating) behaviors

Partial Model  M

a2

a3

a1

may

must
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Refinement of Partial Models

B ���� ϕϕϕϕ

M ���� ϕϕϕϕ

B

M

Concrete

Partial

ρρρρ

B refines M (or M approximates B) iff there exists a relation ρ s.t.
•B ρ-simulates necessary behaviors of M
•Possible behaviors of M ρ-simulate B

Mixed Simulation [DGG97]
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� Kripke Modal Transition Systems [HJS01]
�must transitions ⊆⊆⊆⊆ may transitions

�a.k.a: 3-valued Kripke Structures [CDEG03],
Modal TSs[LT88], Partial Kripke
Structures[BG99]

� Mixed Transition Systems [DGG97]
�independent must and may transitions

�a.k.a.: 4-valued (Belnap) Kripke
Structures[CDEG03]

� Generalized Kripke Modal Transition 
Systems [SG04]
�with must hyper-transitions

�a.k.a: Abstract TSs[AGJ04], Disjunctive Modal 
TSs[Larsen91]

Existing Partial Modeling Formalisms

KMTSs

⊆⊆ ⊆⊆

MixTSs

⊆⊆ ⊆⊆

GKMTSs
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Partial Models and Abstraction

B ���� ϕϕϕϕ

M ���� ϕϕϕϕ

B

M

Concrete

Partial

ρρρρ

Given a concrete system B, an abstract domain A, and a soundness 
relation ρ, construct a partial model M that ρ-approximates B and 
is as precise as possible

Abstraction Problem:

Abstract
Domain A

Fixed Soundness 
Relation

new state
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Example: Predicate Abstraction

x<0,y<0 x<0,y≥0 x≥0,y<0x≥0,y≥0

x<0 y<0 x≥0y≥0

true

false

Cartesian Predicate Abstract Domain
of two predicates: x<0 and y<0

y<0

x≥0
y<0

x<0
y<0

x≥0
y≥0

Abstract Model M

Abstract domain adds expressiveness 
at a cost of possible redundancy

“hyper” 
state

Boolean
states

Partial 
states

induced
must trans
induced

must trans
induced

must trans
induced

must trans

induced
may trans
induced
may trans
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Expressiveness of Partial Models

MixTSsKMTSs GKMTSs⊆⊆⊆⊆⊆⊆⊆⊆

Syntactically

MixTSsKMTSs GKMTSs≡≡≡≡≡≡≡≡

Semantically (for abstraction)

Theorem [VMCAI 2009]
• GKMTSs and MixTSs are expressively equivalent 
with the same bound on size

•MixTSs are more succinct than KMTSs
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From GKMTS to MixTS

x≤≤≤≤0

x%2=0

x>0

x%2=1

x>0

x%2=0

x≤≤≤≤0

odd(x)

a2

a3

a1 a4

GKMTS

Must
Hyper-Trans
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x%2=0

x>0

x%2=1

x>0

x%2=0

x≤≤≤≤0

odd(x)

a2

a3

a1 a4

MixTS

x>0

a5

γγγγ(a5) = γγγγ(a2) ∪∪∪∪ γγγγ(a3)

≡≡≡≡
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Model Checking of Partial Models

�Fact:
Partial Modeling formalisms are not equivalent w.r.t
Model Checking semantics!

�Inductive semantics of temporal logic (SIS)
�defined inductively on the syntax of the logic,    
e.g., ||ϕϕϕϕ ÆÆÆÆ ψψψψ|| ≜≜≜≜ ||ϕϕϕϕ|| ÆÆÆÆ ||ψψψψ||, ||EXϕϕϕϕ|| ≜≜≜≜ pre(||ϕϕϕϕ||)

�tractable, efficient, symbolic algorithm

�Fact:
GKMTSs are strictly more precise than MixTSs w.r.t
the Standard Inductive Semantics!

�But…
… hyper-transitions are hard to encode symbolically
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SIS: MixTS is less precise than GKMTS

For model-checking under standard inductive semantics 
of TL, MixTS are less precise than GKMTS 

p¬q

¬p

q¬p¬q

p¬q

a2

a3

a1 a4

GKMTS

p¬q

¬p

q¬p¬q

p¬q

a2

a3

a1 a4

MixTS¬p

q∨ ¬q: true

q∨ ¬q: true

q∨ ¬q: true

EX q∨¬q: true

q∨¬q: true

q∨¬q: true

q∨¬q: unknown

EX q∨¬q: 

unknown

Property: EX q∨¬q
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Reduced Inductive Semantics

x<0,y<0 x<0,y≥0 x≥0,y<0x≥0,y≥0

x<0 y<0 x≥0y≥0

true

false

Theorem [VMCAI’09]
�RIS more precise than SIS

�GKMTS=MixTS under RIS

for each sub-formula ψψψψ
1. evaluate ψ  ψ  ψ  ψ  on boolean states only

2. extend to partial states
end for

Boolean
states

Partial 
states
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RIS for Predicate Abstraction

TS + 
Over-Aprx

MixTS + 
SIS

MixTS + 
RIS

GKMTS + 
SIS/RIS

Sets repr.
(BDD vars)

N 2N + 1 N + 1 ?

Trans repr.
(BDD vars)

N + N 2N + 2N + 1 N + 2N + 1 ?

Extra Ops none none REDUCE ?

Precision - + ++ ++

Efficiency ++ + ++ ?

MixTS + RIS is a precise Partial Model w/ effective 
symbolic Model Checking procedure
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RIS for Predicate Abstraction

TS + 
Over-Aprx

MixTS + 
SIS

MixTS + 
RIS

GKMTS + 
SIS/RIS

Sets repr.
(BDD vars)

N 2N + 1 N + 1 ?

Trans repr.
(BDD vars)

N + N 2N + 2N + 1 N + 2N + 1 ?

Extra Ops none none REDUCE ?

Precision - + ++ ++

Efficiency ++ + ++ ?

# of 
predicates

to model true, 
false, unknown

MixTS + RIS is a precise Partial Model w/ effective 
symbolic Model Checking procedure
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Results

� RIS is compact than SIS

� RIS is more precise than SIS

� RIS has the same complexity as SIS
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Results
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Results

� RIS is compact than SIS

� RIS is more precise than SIS

� RIS has the same complexity as SIS
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Complexity

Same
Complexity

Same
Complexity
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In Summary

�Using partial models
�Use for abstraction is different than use for 
specification!

�Expressive power
�The three main formalisms are expressively equivalent 
(when used for abstraction)

�Reasoning
�Several model-checking semantics possible.

�The choice dramatically affects precision!

�Verdict:
�overall, MixTS + RIS makes a good 
precision/efficiency trade-off

29

�Partial Models for Program Abstraction
�Overview of existing modeling formalisms

�Program Abstraction “Problem”

�Expressiveness of Partial Models

�Model Checking w/ Reduced Inductive Semantics

�Yasm: A Brief Overview
�Models and Model Checking algorithm

�Program Abstraction

�Abstraction Refinement

�Exploiting Partial Model Semantics

�Checking Non-Termination of Recursive Programs

�Conclusions and Lessons Learned

Outline

30

Yasm: Models and Model Checking

� Belnap Logic
� 4-valued logic: true, false,                
unknown, inconsistent

� Belnap Kripke Structures
� Kripke structures extended to Belnap Logic
� Propositions

� True, False, or Unknown

� Transitions
� necessary: ⊤⊤⊤⊤, possible: ⊥⊥⊥⊥

� necessary and possible: t, impossible: f

�Analysis via Multi-Valued            
Model Checking

p = t

q = f

p = f

q = f

p = t
q = ⊥p = t

q = t

t

f

⊥⊥⊥⊥ ⊤

Belnap
logic

M. Chechik, B. Devereux, S. Easterbrook, A. Gurfinkel: Multi-valued symbolic model-

checking. ACM Trans. Softw. Eng. Methodol. 12(4)

Belnap
Kripke
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Yasm: Program Abstraction

b1 = b1 ? t : *,

b2 = b2

b1 = t

b2 = t

b1 = f

b2 = t

b1 = t

b2 = t

b1 = f

b2 = t

b1 = *

b2 = t

b1 = t

b2 = t

b1 = f

b2 = t

b1 = ⊥⊥⊥⊥
b2 = t

t

f

⊥⊥⊥⊥ ⊤
Abstract (BP)

Over-Approx Exact Under-Approx

y = y - 1; 

Concrete (C)
b1 is (y <= 2) 

b2 is (x = 2)

A. Gurfinkel, M. Chechik: Why Waste a Perfectly Good Abstraction? TACAS 2006

c2bp
[SLAM]
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can stop here

cause

Yasm: Abstraction Refinement

EF (ERROR) (s0) = ⊥∃n EFn (ERROR)(s0) = ⊥EF4 (ERROR)(s0) = ⊥s0→→→→s1 EF3(ERROR)(s1) = ⊥s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

XChekIs ERROR Reachable?

EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥⊥⊥⊥ ⊤

A. Gurfinkel, M. Chechik: Generating Counterexamples for Multi-valued Model-Checking. FME 2003

A. Gurfinkel, M. Chechik: Proof-Like Counter-Examples. TACAS 2003
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� Aggressive Abstractions
�Enable coarse and computationally cheaper 
abstraction

� Shallow Counterexamples
�Refinement guided to promising counterexample

� Reusing Previous Model-Checking Results
�EF ERROR ���� EF (ERROR “unavoidable” states)

Exploiting  Exact Approximation Semantics

A. Gurfinkel, O. Wei, M. Chechik: Yasm: A Software Model-Checker for Verification and Refutation. CAV 2006

A. Gurfinkel, M. Chechik: Why Waste a Perfectly Good Abstraction? TACAS 2006
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Non-Termination of Recursive Programs

Abstract

Model Check

Abstract

Program

Reachability,
Non-
termination

True False

Program

Predicates

Unknown

Partial

Model

Exact
Semantics

Proof 
Generation

Refine

Partial

Proof

with stack-free 
semantics

abstract 
fixpoint 
computation

extended for 
function summary

A. Gurfinkel, O. Wei, M. Chechik: Model Checking Recursive Programs with Exact Predicate Abstraction. 

ATVA 2008
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Experiments: Non-termination 

void quicksort(

int left,int right){

1: int lo,hi;

2: if(left>=right)

3    return;

4: lo=left; hi=right;

5: while(lo<=hi){

6:   if(nondet(){

7:     lo++;

8:   } else {

9:    if(lo!=left||hi!=right)

10:     hi--;

11:  }

12: }

13: quicksort(left,hi);

14: quicksort(lo,right);

15:}

Buggy Quicksort

• example from Moped [ES01] and Vera 
[ACEM05]

� can prove non-termination over 
finite data domain

� assume over-approximation for 
infinite domain 

YASM automatically proves non-
termination on infinite data domain !  

� predicates

hi=right,lo=left, lo<=hi,left>=right

� non-terminating path
pc=2,     left=1, right=2

pc=4,     lo=left=1, hi=right=2

……

pc=2,     left=1, right=2
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Lessons Learned

�Partial models can be used effectively in  
Software Model Checking. Good fit for  
CEGAR.

�Using partial models in abstraction is very 
different from using them for modeling and 
specification

�4-valued (and 3-valued) analysis is much 
easier to explain than the multi-valued 
foundations behind it!

�Both Abstract Interpretation and Model 
Checking gave us invaluable insights. 

�It pays off to look at the problem with “both eyes”
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Status and Future Work

�Yasm – state-of-the-art SMC (5 years ago)
�still great for trying new ideas and heuristics, BUT

�tied to an old theorem proover (CVCLite)

�fairly naive front-end and predicate abstraction algorithm

�WP-based abstraction-refinement (v.s. interpolant-based)

� no recursion and reduced semantics in stable release

�will be happy to help port/use/understand

�available at http://www.cs.toronto.edu/~yasm

�Dynamic analysis with partial models
�partial model to capture dynamically explored states

�under-approximation from dynamic execution

�over-approximation from abstraction of source code

�see our paper w/ A. Albarghouthi and O. Wei  in CAV 2010
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