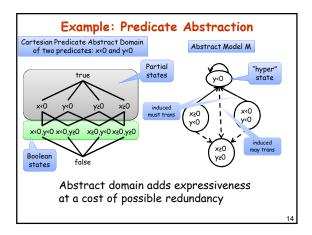
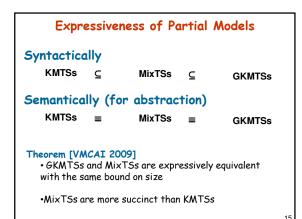
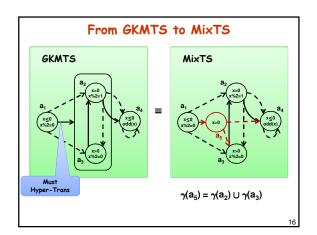
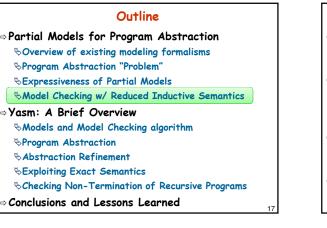
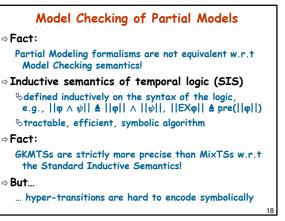

⇒Conclusions and Lessons Learned

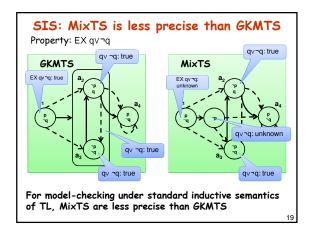


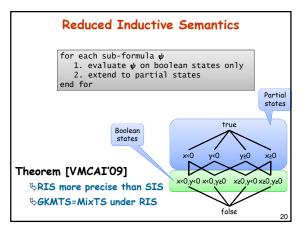


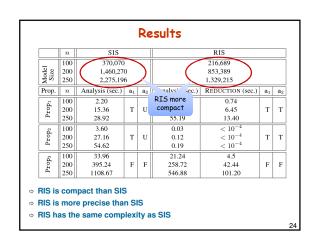

Existing Partial Modeling Form	nalisms
⇒ Kripke Modal Transition Systems [HJS01] & must transitions ⊆ may transitions	KMTSs
∜a.k.a: 3-valued Kripke Structures [CDE603], Modal TSs[L⊤88], Partial Kripke Structures[B699]	IN
⇒ Mixed Transition Systems [D6697]	MixTSs
Sindependent <i>must</i> and <i>may</i> transitions	
&a.k.a.: 4-valued (Belnap) Kripke Structures[CDE603]	IN
⇒ Generalized Kripke Modal Transition Systems [5604]	GKMTSs
with <i>must</i> hyper-transitions	
Sa.k.a: Abstract TSs[AGJ04], Disjunctive Modal TSs[Larsen91]	
	1

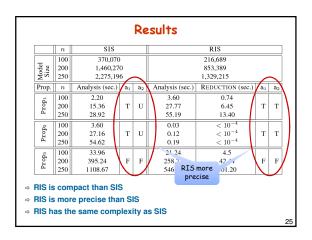


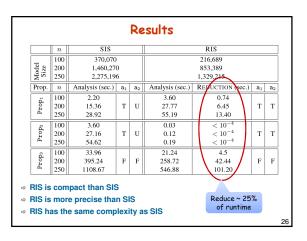




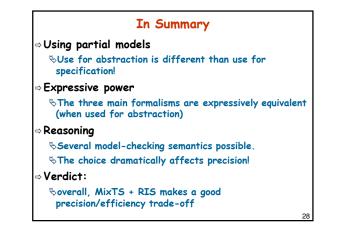


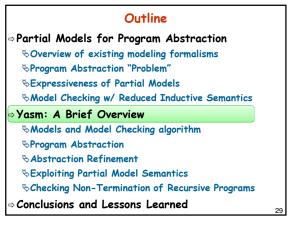




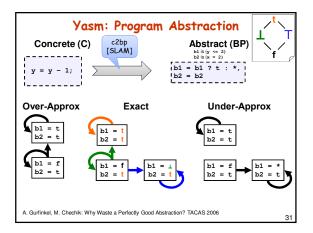

	TS + Over-Aprx	MixTS + SIS	MixTS + RIS	GKMTS + SIS/RIS
Sets repr. (BDD vars)	N	2N+1	N+1	2
Trans repr. (BDD vars)	N + N	2N + 2N + 1	N + 2N + 1	?
Extra Ops	none	none	REDUCE	2
Precision	-	+	++	++
Efficiency	**	+	++	2

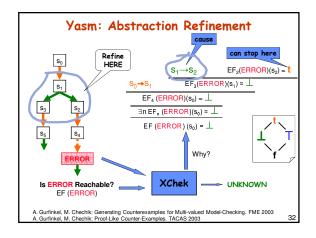
redicates	TS + Over-Aprx	MixTS + SIS	MixTs	GKMTS + SIS/RIS
Sets repr. (BDD vars)	N	2N+1	N+1	2
Trans repr. (BDD vars)	N + N	2N + 2N + 1	N + 2N + 1	?
Extra Ops	none	none	REDUCE	>
Precision	-	+	++	++
Efficiency	**	÷	+*	2


	n	SIS				RIS		
	100	370,070			216,689 853,389			
Model Size	200	1,460,270						
N	250	2,275,196		1,329,215				
Prop.	n	Analysis (sec.)	a_1	a_2	Analysis (sec.)	REDUCTION (sec.)	a_1	a ₂
1	100	2.20			3.60	0.74		
Prop1	200	15.36	T	U	27.77	6.45	Т	Т
Ъ.	250	28.92			55.19	13.40		
8	100	3.60			0.03	$< 10^{-4}$		
Prop2	200	27.16	Т	U	0.12	$< 10^{-4}$	Т	Т
	250	54.62			0.19	$< 10^{-4}$		
0	100	33.96			21.24	4.5		
Prop3	200	395.24	F	F	258.72	42.44	F	F
<u>д</u>	250	1108.67			546.88	101.20		
RIS is	mor	pact than SIS e precise tha e same comp	n Sl		s SIS			

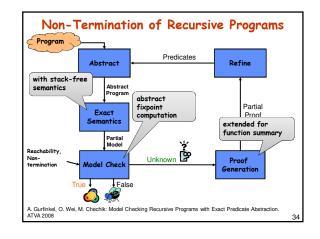


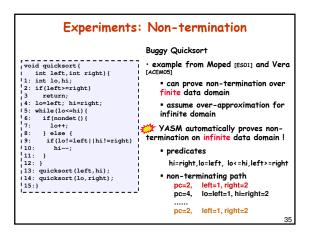


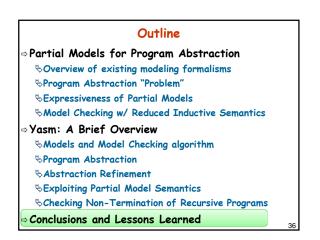


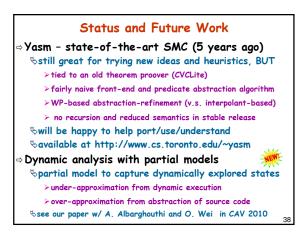

	n	SIS				RIS		
	100	370,070		216,689				
Model Size	200	1,460,270		853,389				
Si	250	2,275,196		1,329,215				
Prop.	n	Analysis (sec.)	a1	a2	Avalysis (sec.)	REDUCTION (sec.)	a_1	a ₂
	100	2.20			3.60	0.74		
Prop1	200	15.36	Т	U	27.77	6.45	Т	Т
щ.	250	28.92			55.19	13.40		
8	100	3.60			0.03	$< 10^{-4}$		
Prop2	200	27.16	Т	U	0.12	$< 10^{-4}$	Т	Т
Щ.	250	54.62			0.19	$< 10^{-4}$		
2	100	33.96			21.24	4.5		
Prop3	200	395.24	F	F	258.72	42.44	F	F
Щ.	250	1108.67			546.88	101.20		
			Same nplex					










Lessons Learned

37

- Partial models can be used effectively in Software Model Checking. Good fit for CEGAR.
- &Using partial models in abstraction is very different from using them for modeling and specification
- &4-valued (and 3-valued) analysis is much easier to explain than the multi-valued foundations behind it!
- Both Abstract Interpretation and Model Checking gave us invaluable insights.

>It pays off to look at the problem with "both eyes"

References

- Ou Wei, Arie Gurfinkel, Marsha Chechik: Mixed Transition Systems Revisited. VMCAI 2009
- Arie Gurfinkel, Ou Wei, Marsha Chechik: Model Checking Recursive Programs with Exact Predicate Abstraction. ATVA 2008
- Arie Gurfinkel, Ou Wei, Marsha Chechik: Yasm: A Software Model-Checker for Verification and Refutation. CAV 2006
- Arie Gurfinkel, Marsha Chechik: Why Waste a Perfectly Good Abstraction? TACAS 2006
 Arie Grund Marsha, Chechila Castanatic Gastanatic
- Arie Gurfinkel, Ou Wei, Marsha Chechik: Systematic Construction of Abstractions for Model-Checking. VMCAI 2006
 Arie Gurfinkel, Marsha Chechik: Generating Counterexamples for Multi-valued Model-Checking. FME 2003
- Multi-valued Model-Checking. FME 2003 7 Arie Gurfinkel Marsha Chechik: Proof-Like Counter-Examples
- Arie Gurfinkel, Marsha Chechik: Proof-Like Counter-Examples. TACAS 2003
 Marsha Chechik. Benet Devereux. Steve M. Easterbrook. Arie
- Marsha Chechik, Benet Devereux, Steve M. Easterbrook, Arie Gurfinkel: Multi-valued symbolic model-checking. ACM Trans. Softw. Eng. Methodol. 12(4)

