

A framework towards adaptable and delegated end-to-end transport-layer security for **Internet-integrated Wireless Sensor Networks**

> Jorge Granjal Edmundo Monteiro Jorge Sá Silva

Centre for Informatics and Systems University of Coimbra, Portugal

- 1) Motivation and goals
- 2) Proposed framework
- 3) Proposed system architecture
- 4) Delegated ECC public-key authentication
- 5) Experimental evaluation
- 6) Conclusions

- 1) Motivation and goals
- 2) Proposed framework
- 3) Proposed system architecture
- 4) Delegated ECC public-key authentication
- 5) Experimental evaluation
- 6) Conclusions

Motivation and goals

We may currently observe that:

- Sensing applications on the IoT will require appropriate security mechanisms, including to protect end-to-end communications.
- Security should be quantifiable and adaptable.

Main goals:

- Propose a framework supporting adaptable end-to-end security in the context of Internet-interconnected WSN.
- Address end-to-end transport-layer security with delegated ECC public-key authentication.
- Evaluate experimentally the proposed mechanisms in the context of the proposed framework.

- 1) Motivation and goals
- 2) Proposed framework
- 3) Proposed system architecture
- 4) Delegated ECC public-key authentication
- 5) Experimental evaluation
- 6) Conclusions

Proposed framework

 A framework for the usage of secure end-to-end transport-layer communications with Internet-integrated sensing applications:

- 1) Motivation and goals
- 2) Proposed framework

3) Proposed system architecture

- 4) Delegated ECC public-key authentication
- 5) Experimental evaluation
- 6) Conclusions

Proposed system architecture

Main goals:

- Support of end-to-end transport-layer security in three usage modes: full DTLS security, DTLS with delegated handshake, DTLS with fully delegated handshake.
- Support of future security mechanisms in the context of Internet-integrated WSN.
- Full compatibility with application-layer CoAP and 6LoWPAN security

Proposed system architecture

ERCIM Workshop 2013

- 1) Motivation and goals
- 2) Proposed framework
- 3) Proposed system architecture
- 4) Delegated ECC public-key authentication
- 5) Experimental evaluation
- 6) Conclusions

Delegated ECC public-key authentication

Regarding CoAP security:

- CoAP supports three security modes :
 - *PreSharedKey* (TLS_PSK_WITH_AES_128_CCM_8)
 - *RawPublicKey* and *Certificates* (TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8)
- Encryption may use AES (CCM,CBC)
- AES/CCM is available in sensing platforms such as the TelosB implementing IEEE 802.15.4

Delegated ECC public-key authentication

- A secure DTLS session requires the two parties to agree on:
 - The cipher suite
 - The encryption keys
- The DTLS handshake transports the information required for both parties to obtain encryption keys:
 - A shared master key is obtained from a pair of client and server random values plus a pre-shared master secret key (PMSK)
 - Final encryption keys are obtained from the shared master secret.
- PMSK generation depends on the cipher employed:
 - With public-key suites the client generates the PMSK and sends it to the server
 - Pre-shared keys suites don't support this, but we may modify TLS_PSK_WITH_AES_128_CCM_8 as long as we maintain appropriate security on the LoWPAN

Delegated ECC public-key authentication

Mediated DTLS handshake

6LBR and CoAP server mutual authentication

- 1) Motivation and goals
- 2) Proposed framework
- 3) Proposed system architecture
- 4) Delegated ECC public-key authentication
- 5) Experimental evaluation
- 6) Conclusions

- Experimental evaluation setup using Linux and TelosB devices
- TelosB: 16-bit MSP430, 48KB ROM, 10KB RAM, IEEE 802.15.4
- Support of TinyOS, BLIP, CoAP, DTLS (ECDSA, ECDHE), SHA-256 and LoWPAN authentication
- Standalone AES/CCM hardware encryption
- LibCoAP with DTLS support

- Two application profiles:
 - Moderate number of DTLS sessions/hour (1 to 400) and of CoAP requests per DTLS session (2).
 - Higher number of DTLS sessions/hour (14 to 7200) and of CoAP requests per DTLS session (10).
- Evaluate end-to-end security in two usage modes:
 - Support of full end-to-end DTLS security.
 - Delegated DTLS authentication using the proposed mediated handshake.

 Impact on the lifetime of sensing applications (moderate usage profile):

ERCIM Workshop 2013

 Impact on the lifetime of sensing applications (higher usage profile):

- 1) Motivation and goals
- 2) Proposed framework
- 3) Proposed system architecture
- 4) Delegated ECC public-key authentication
- 5) Experimental evaluation
- 6) Conclusions

Conclusions

- Efficient support of end-to-end security using delegated mutual authentication.
- Compatibility with standardized CoAP security.
- Other security mechanisms based on a security gateway may be adopted in the future (applicationlayer message analysis and filtering, 6LoWPAN security).
- Future work:
 - Transparent end-to-end security for mobile devices.
 - Mechanisms to configure security according to application profiles and characteristics of devices.
 - Adoption of other security suites on the LoWPAN domain.