Linux-based Measuring Platform for Time-Based Location Observables in IEEE 802.11 Networks

I. Martin-Escalona, F. Barcelo-Arroyo, E. Zola

(SPEAKER: Enrica Zola)

Joint ERCIM eMobility and MobiSense Workshop, June 2013
1. Indoor positioning
 • Introduction
 • Location platform approaches
2. Goals and requirements
3. The SoftMAC approach in Linux
4. The measuring system
5. Performance assessment
 • Scenario used for collecting data
 • Results
• Several technologies are currently available for indoor positioning in IEEE 802.11
 ✓ Proximity-based
 ✓ Direction of arrival
 ✓ Fingerprinting
 ✓ Range-based

• Time-of-flight (ToF) techniques
 ✓ Time and time-differences can be used as observables
 ✓ Good trade-off between accuracy and complexity
1. Location platform approaches

- Analytical and simulation assessment needs to be verified with real test beds
- Implementation of location techniques
 - Custom hardware
 - Best results in terms of QoS (e.g. 1m of accuracy)
 - Tight design: difficult to upgrade/enhance
 - Custom software
 - More flexible design at the cost of higher error
 - Is the QoS enough for most of the LBS?
Providing a location platform aimed at:

- Providing the best performance
- Supporting legacy hardware
- Portability of the platform to several architectures
- Supporting time-based location techniques
 - 2-way TOA (RTT)
 - Passive TDOA (TDOA)
- Flexibility for adding new features and techniques
3. The SoftMAC approach in Linux

- Measurements taken in the MAC layer of the Linux IEEE 802.11 stack
 - Observing in the WNIC driver
 - Changes in the WNIC driver for observing the ToF
 - Specific changes for each driver
 - Best results
 - The SoftMAC approach (Linux / FreeBSD)
 - Common to all drivers
 - More software layers are crossed
3. The SoftMAC approach in Linux

SoftMac in Linux: mac802.11 framework

- **mac80211**: Common MAC operations
- **SoftMAC drivers**: Specific MAC operations
- **cfg80211**: WNIC configuration (succeeds *wireless extensions*)
4. The measuring system

- pos80211
- TCP/IP stack
- Patches
- SoftMAC
- SoftMAC Drivers
- Firmwares
- Device hardware

- System calls
- sockets
- pos80211_ops
- softmac_ops

- Round trip time
- Passive TDOA

Files: main.c, tx.c, rx.c
4. The measuring system

The round trip time plugin

- **Begin**
 - Management frame?
 - `ieee80211_is_mgmt(...)`
 - Yes
 - Timestamping the frame
 - `struct timespec ts; getnstimeofday(&ts); last_tx_time = TIMESPEC_TO_NS(ts); last_tx_clock = get_cycles();`
 - No
 - Transmission event
 - IEEE 802.11 device
 - Access point
 - Data
 - RTT
 - Acknowledgement

- **Begin**
 - Reception event
 - ACK frame addressed to the node?
 - `ieee80211_is_ack(...)`
 - Yes
 - Associated transmission?
 - `last_tx_time < last_rx_time`
 - Yes
 - Computing observable (RTT)
 - `newRTT = (TYPE_OF_POSITIONING_DATA) (last_rx_time - last_tx_time);`
 - `newRTT = (TYPE_OF_POSITIONING_DATA) (last_rx_clock - last_tx_clock);`
 - Storing observable
 - `RTT_CONTAINER_ADD_DATA(rtt_queue, (voidp) newRTT);`
 - Removing the previous associated transmission
 - `last_tx_time = last_tx_clock = MAXIMUM_INTEGER`
 - No

4.1. Linux-based Measuring Platform for Time-Based Location Observables in IEEE 802.11 Networks

Second Joint ERCIM eMobility and MobiSense Workshop, April 2013
4. The measuring system

The passive TDOA plugin

- **Begin**
- **Reception event**
 - **To distribution system?**
 - Yes
 - **Is the frame sent by the active node?**
 - Yes
 - **Timestamping the frame**
 - `struct timespec ts;
 - getnstimeofday(&ts);
 - last_tx_time = TIMESPEC_TO_NS(ts);
 - last_tx_clock = get_cycles();`
 - **Change the plugin status**
 - `tx_status = AWAITING_ACK`
 - No
 - No
 - **Change the plugin status**
 - `tx_status = AWAITING_ACK`
 - No
 - **Change the plugin status**
 - `tx_status = AWAITING_DATA`
- **End**

Network data flow

- **Active node**
- **AP**
- **Passive node**
- **RTT**
- **Tx**
- **Rx**
- **t**
- **TDOA**
First results: focused on probing the concept

Assessed scenario:
- Concrete walls
- LOS between nodes
- Dedicated network
- Passive and active STAs separated 0.5 m
- Limited interference
- Static conditions

Experiment:
- 10 x 10.000 pings from the active STA to the AP
- No ping overlapping
The round trip time plugin

a) Raw

b) With Gaussian FILTER
The passive TDOA plugin

a) Raw

b) With Gaussian FILTER
Further questions?