Active vs Passive localisation strategies

D. C. Dimitrova
University of Bern
outline

• Localisation systems taxonomy

• Passive system perspective
 – Passive system with RSS
 – Passive system with TOA
 – The eavesdropping challenge

• Active system perspective
 – Network-based
 – Terminal-based

• Discussion
Localisation systems taxonomy

Radio localisation system

Decision process
- Network-based
- Terminal-assisted
- Terminal-based
- Passive

Radio technology
- Cellular
- WiFi
- Bluetooth
- IEEE 802.15.4
- RFID
- UWB

Signal metric
- Signal direction
- Signal timing
- Signal strength

Localisation algorithm
- Triangulation
- Trilateration
- Multilateration
- Scene analysis
Localisation systems taxonomy

- Network-based & Network assisted
 - Full information & computational power
- Terminal-based
 - Limited computation
- Passive
 - Third-party devices
 - Traffic overhearing
 - No feedback
Localisation systems taxonomy

- Network-based & Network assisted
 - Full information & computational power

- Terminal-based
 - Limited computation

- Passive
 - Third-party devices
 - Traffic overhearing
 - No feedback
Localisation systems taxonomy

- **Network-based & Network assisted**
 - Full information & computational power
- **Terminal-based**
 - Limited computation
- **Passive**
 - Third-party devices
 - Traffic overhearing
 - No feedback
Passive system perspective

• Overview
 – Similar to network-based but more limited

• Advantages
 – Independent third party realisation
 – Computational power
 – Ease of deployment

• Disadvantages
 – Highly dependable on external information, incl. user traffic
 – Sensitive to user’s location
 – More technically challenging
Passive system perspective

• RSS-based systems
 – Received Signal Strength (RSS) measurements
 – Vulnerable to power control & terminal location
 – High accuracy often depends on anchor density

• Time-based systems
 – TOA (Time Of Arrival)
 • Requires synchronisation with the terminal & anchors
 – TDOA (Time Difference Of Arrival)
 • Requires synchronisation only among anchors
 – Two-way TOA (RTT)
 • Delay sensitive to local signal processing
 • Does not need synchronisation but terminal participation
Passive system perspective

- WiFi/BT (indoor) test-bed
 - Sensor nodes with WiFi & BT interface
 - RSS-based

- Pros:
 - User data easily identifiable
 - Non-complex traffic processing
 - Cheap hardware

- Cons:
 - Dependent on user activity
 - Large RSS fluctuations -> many anchors
 - May require knowledge on Ptx
Passive system perspective

• GSM test-bed
 – Networked-USRP nodes with GPS rx
 – SDR-based signal processing
 – TDOA-based

• Pros:
 – No knowledge on Ptx (TDOA)
 – Less vulnerable than RSS (time)
 – Less anchors needed

• Cons:
 – Dependent on user activity
 – User data not easily identifiable
 – Requires synchronisation (TDOA)
 – Complex traffic processing (specialized sw)
 – Costly hardware
Passive system perspective

• User identification
 – Three IDs: IMEI, IMSI, TMSI
 – Only few messages carry an ID
 -> single messages, if missed no ID recovery
 – IMSI non-trivial relation to TMSI
 -> TMSI may be challenging to use
 – User encryption
 -> decreases the number of useful messages

• User activity
 – Localisation depends on location updates or user activity (service requests), e.g., paging, connection
Passive system perspective

- Synchronisation between devices
 - Needed for TDOA
 - Sets effective lower bound on the localisation error
 - Best is GPS-based
 - Long-term offset compensation
 - Remaining short term clock offset
 - In the order of 200ns -> 60m
 - Can be compensated but increases complexity
Passive system perspective
Passive system perspective

• Synchronisation with data traffic
 – User identification needs message recovery
 – Message recovery needs synchronisation with user

• Challenges
 – Uplink is not meant for synchronisation
 • Only for fine tuning
 • Shorter training sequence
 – Synchronisation depends on user position

• Method
 – Use training sequence in uplink to recover synchronisation
 – Reaches 80-90% recovery rate
 • if synchronisation is lost needs to recover -> lost messages
Passive system perspective

- Complex traffic processing
 - For data synchronisation
 - For message parsing
 - For message timing

- Message timing
 - Timestamp accuracy depends on signal bandwidth
 - Advanced signal processing is needed for timing
 - Expected accuracy 40ns -> 12m (ideal propagation)
 - Oversampling may help
 - ADC rate not supported by the software processing
 - Proper sample selection is needed
Passive system perspective

• Costly hardware
 – USRP about $1500
 – Processing power
 • Embedded devices not enough power
 • Networked devices need machine
 – Wide-band processing
 • Standard USRP up to 20MHz
 • Advanced options much more expensive
 – Pros: less anchors needed
Active system perspective

• Network-based & terminal-assisted
 – Inherent issues based on parameter (RSS or time)
 – TDOA challenges depend on signal bandwidth

• Pros:
 – User identification inherently available
 – No user synchronisation issues
 – Anchors synchronisation potentially easier
 – Traffic processing already included

• Cons:
 – Dependent on user activity
 – Difficult to step-in (provider owned for cellular)
Active system perspective

- **Terminal-based**
 - Inherent issues based on parameter (RSS or time)
 - TDOA challenges depend on signal bandwidth
- **Pros:**
 - User identification inherently available
 - Non-dependent on user activity
 - No user synchronisation issues
 - Traffic processing already included
- **Cons:**
 - Requires deployment on the terminal
 - Anchors synchronisation is necessary
 - Terminal may lack computational power
Discussion
Discussion

- Do you have experience with localisation?
- Which system type (active, passive) was deployed?
- Which parameter (RSS, time) was used?
- What is your impression/lessons learnt?
- Which system you would like to use?
- Where do the bigger challenges lay?