Active vs Passive localisation strategies

D. C. Dimitrova University of Bern

outline

- Localisation systems taxonomy
- Passive system perspective
 - Passive system with RSS
 - Passive system with TOA
 - The eavesdropping challenge
- Active system perspective
 - Network-based
 - Terminal-based
- Discussion

$u^{\scriptscriptstyle \flat}$

Ь

Localisation systems taxonomy

Localisation systems taxonomy

- Network-based & Network assisted
 - Full information & computational power
- Terminal-based
 - Limited computation
- Passive
 - Third-party devices
 - Traffic overhearing
 - No feedback

Localisation systems taxonomy

- Network-based & Network assisted
 - Full information & computational power
- Terminal-based
 - Limited computation
- Passive
 - Third-party devices
 - Traffic overhearing
 - No feedback

UNIVERSITÄT

Localisation systems taxonomy

- Network-based & Network assisted
 - Full information & computational power
- Terminal-based
 - Limited computation
- Passive
 - Third-party devices
 - Traffic overhearing
 - No feedback

- Overview
 - Similar to network-based but more limited
- Advantages
 - Independent third party realisation
 - Computational power
 - Ease of deployment
- Disadvantages
 - Highly dependable on external information, incl. user traffic
 - Sensitive to user's location
 - More technically challenging

Passive system perspective

RSS-based systems

- Received Signal Strength (RSS) measurements
- Vulnerable to power control & terminal location
- High accuracy often depends on anchor density
- Time-based systems
 - TOA (Time Of Arrival)
 - Requires synchronisation with the terminal & anchors
 - TDOA (Time Difference Of Arrival)
 - Requires synchronisation only among anchors
 - Two-way TOA (RTT)
 - Delay sensitive to local signal processing
 - Does not need synchronisation but terminal participation

- WiFi/BT (indoor) test-bed
 - Sensor nodes with WiFi & BT interface
 - RSS-based
- Pros:
 - User data easily identifiable
 - Non-complex traffic processing
 - Cheap hardware
- Cons:
 - Dependent on user activity
 - Large RSS fluctuations -> many anchors
 - May require knowledge on Ptx

UIVEDCITÄT

GSM test-bed

- Networked-USRP nodes with GPS rx
- SDR-based signal processing
- TDOA-based
- Pros:
 - No knowledge on Ptx (TDOA)
 - Less vulnerable than RSS (time)
 - Less anchors needed
- Cons:

06/06/2012

- Dependent on user activity
- User data not easily identifiable
- Requires synchronisation (TDOA)
- Complex traffic processing (specialized sw)
- Costly hardware

Data base & processing

NIVERSITÄT

- User identification
 - Three IDs: IMEI, IMSI, TMSI
 - Only few messages carry an ID
 - -> single messages, if missed no ID recovery
 - IMSI non-trivial relation to TMSI
 - -> TMSI may be challenging to use
 - User encryption
 - -> decreases the number of useful messages
- User activity
 - Localisation depends on location updates or user activity (service requests), e.g., paging, connection

- Synchronisation between devices
 - Needed for TDOA
 - Sets effective lower bound on the localisation error
 - Best is GPS-based
 - Long-term offset compensation
 - Remaining short term clock offset
 - In the order of 200ns -> 60m
 - Can be compensated but increases complexity

Data base & processing

UNIVERSITÄT RERN

- Synchronisation with data traffic
 - User identification needs message recovery
 - Message recovery needs synchronisation with user
- Challenges
 - Uplink is not meant for synchronisation
 - Only for fine tuning
 - Shorter training sequence
 - Synchronisation depends on user position
- Method
 - Use training sequence in uplink to recover synchronisation
 - Reaches 80-90% recovery rate
 - if synchronisation is lost needs to recover -> lost messages

- Complex traffic processing
 - For data synchronisation
 - For message parsing
 - For message timing
- Message timing
 - Timestamp accuracy depends on signal bandwidth
 - Advanced signal processing is needed for timing
 - Expected accuracy 40ns -> 12m (ideal propagation)
 - Oversampling may help
 - ADC rate not supported by the software processing
 - Proper sample selection is needed

NIVERSITÄT

D UNIVERSITÄT BERN

Passive system perspective

- Costly hardware
 - USRP about \$1500
 - Processing power
 - Embedded devices not enough power
 - Networked devices need machine
 - Wide-band processing
 - Standard USRP up to 20MHz
 - Advanced options much more expensive
 - Pros: less anchors needed

Data base & processing

Active system perspective

- Network-based & terminal-assisted
 - Inherent issues based on parameter (RSS or time)
 TDOA challenges depend on signal bandwidth
- Pros:
 - User identification inherently available
 - No user synchronisation issues
 - Anchors synchronisation potentially easier
 - Traffic processing already included
- Cons:
 - Dependent on user activity
 - Difficult to step-in (provider owned for cellular)

Active system perspective

- Terminal-based
 - Inherent issues based on parameter (RSS or time)
 - TDOA challenges depend on signal bandwidth
- Pros:
 - User identification inherently available
 - Non-dependent on user activity
 - No user synchronisation issues
 - Traffic processing already included
- Cons:
 - Requires deployment on the terminal
 - Anchors synchronisation is necessary
 - Terminal may lack computational power

 u^{b}

b UNIVERSITÄT BERN

Discussion

06/06/2012

ERCIM eMobility & MobiSense'12, St Petersbug, Russia

Discussion

- Do you have experience with localisation?
- Which system type (active, passive) was deployed?
- Which parameter (RSS, time) was used?
- What is your impression/lessons learnt?
- Which system you would like to use?
- Where do the bigger challenges lay?